Search Results

Now showing 1 - 3 of 3
  • Item
    Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation
    (Washington, DC : ACS Publications, 2015) Buchner, Franziska; Nakayama, Akira; Yamazaki, Shohei; Ritze, Hans-Hermann; Lübcke, Andrea
    Time-resolved photoelectron spectroscopy is performed on thymine and thymidine in aqueous solution to study the excited-state relaxation dynamics of these molecules. We find two contributions with sub-ps lifetimes in line with recent excited-state QM/MM molecular dynamics simulations (J. Chem. Phys.2013, 139, 214304). The temporal evolution of ionization energies for the excited ππ* state along the QM/MM molecular dynamics trajectories were calculated and are compatible with experimental results, where the two contributions correspond to the relaxation paths in the ππ* state involving different conical intersections with the ground state. Theoretical calculations also show that ionization from the nπ* state is possible at the given photon energies, but we have not found any experimental indication for signal from the nπ* state. In contrast to currently accepted relaxation mechanisms, we suggest that the nπ* state is not involved in the relaxation process of thymine in aqueous solution.
  • Item
    Terahertz radiative coupling and damping in multilayer graphene
    (Bristol : IOP, 2014) Bowlan, P.; Martinez-Moreno, E.; Reimann, K.; Woerner, M.; Elsaesser, T.
    The nonlinear interaction between intense terahertz (THz) pulses and epitaxial multilayer graphene is studied by field-resolved THz pump-probe spectroscopy. THz excitation results in a transient induced absorption with decay times of a few picoseconds, much faster than carrier recombination in single graphene layers. The decay times increase with decreasing temperature and increasing amplitude of the excitation. This behaviour originates from the predominant coupling of electrons to the electromagnetic field via the very strong interband dipole moment while scattering processes with phonons and impurities play a minor role. The nonlinear response at field amplitudes above 1 kV cm-1 is in the carrier-wave Rabi flopping regime with a pronounced coupling of the graphene layers via the radiation field. Theoretical calculations account for the experimental results.
  • Item
    Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F(-) + CH3I
    (Washington, DC : American Chemical Society, 2016) Carrascosa, Eduardo; Michaelsen, Tim; Stei, Martin; Bastian, Björn; Meyer, Jennifer; Mikosch, Jochen; Wester, Roland
    Ion–molecule reactions of the type X– + CH3Y are commonly assumed to produce Y– through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F– + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I– is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF– via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI]− product ion. This [FHI]− product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I–. A similar trend is observed for the isoelectronic OH– + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy.