Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Expansion of the (BB)Ru metallacycle with coinage metal cations: Formation of B-M-Ru-B (M = Cu, Ag, Au) dimetalacyclodiboryls

2018, Eleazer, B.J., Smith, M.D., Popov, A.A., Peryshkov, D.V.

In this work, we introduce a novel approach for the selective assembly of heterometallic complexes by unprecedented coordination of coinage metal cations to strained single ruthenium-boron bonds on a surface of icosahedral boron clusters. M(i) cations (M = Cu, Ag, and Au) insert into B-Ru bonds of the (BB)-carboryne complex of ruthenium with the formation of four-membered B-M-Ru-B metalacycles. Results of theoretical calculations suggest that bonding within these metalacycles can be best described as unusual three-center-two-electron B-M⋯Ru interactions that are isolobal to B-H⋯Ru borane coordination for M = Cu and Ag, or the pairs of two-center-two electron B-Au and Au-Ru interactions for M = Au. These transformations comprise the first synthetic route to exohedral coinage metal boryl complexes of icosahedral closo-{C2B10} clusters, which feature short Cu-B (2.029(2) Å) and Ag-B (2.182(3) Å) bonds and the shortest Au-B bond (2.027(2) Å) reported to date. The reported heterometallic complexes contain Cu(i) and Au(i) centers in uncharacteristic square-planar coordination environments. These findings pave the way to rational construction of a broader class of multimetallic architectures featuring M-B bonds.

Loading...
Thumbnail Image
Item

Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance

2020, Pan, Yu, Yao, Mengyu, Hong, Xiaochen, Zhu, Yifan, Fan, Fengren, Imasato, Kazuki, He, Yangkun, Hess, Christian, Fink, Jörg, Yang, Jiong, Büchner, Bernd, Fu, Chenguang, Snyder, G. Jeffrey, Felser, Claudia

The rapid growth of the thermoelectric cooler market makes the development of novel room temperature thermoelectric materials of great importance. Ternary n-type Mg3(Bi,Sb)2 alloys are promising alternatives to the state-of-the-art Bi2(Te,Se)3 alloys but grain boundary resistance is the most important limitation. n-type Mg3(Bi,Sb)2 single crystals with negligible grain boundaries are expected to have particularly high zT but have rarely been realized due to the demanding Mg-rich growth conditions required. Here, we report, for the first time, the thermoelectric properties of n-type Mg3(Bi,Sb)2 alloyed single crystals grown by a one-step Mg-flux method using sealed tantalum tubes. High weighted mobility ∼140 cm2 V−1 s−1 and a high zT of 0.82 at 315 K are achieved in Y-doped Mg3Bi1.25Sb0.75 single crystals. Through both experimental angle-resolved photoemission spectroscopy and theoretical calculations, we denote the origin of the high thermoelectric performance from a point of view of band widening effect and electronegativity, as well as the necessity to form high Bi/Sb ratio ternary Mg3(Bi,Sb)2 alloys. The present work paves the way for further development of Mg3(Bi,Sb)2 for near room temperature thermoelectric applications.

Loading...
Thumbnail Image
Item

Terahertz radiative coupling and damping in multilayer graphene

2014, Bowlan, P., Martinez-Moreno, E., Reimann, K., Woerner, M., Elsaesser, T.

The nonlinear interaction between intense terahertz (THz) pulses and epitaxial multilayer graphene is studied by field-resolved THz pump-probe spectroscopy. THz excitation results in a transient induced absorption with decay times of a few picoseconds, much faster than carrier recombination in single graphene layers. The decay times increase with decreasing temperature and increasing amplitude of the excitation. This behaviour originates from the predominant coupling of electrons to the electromagnetic field via the very strong interband dipole moment while scattering processes with phonons and impurities play a minor role. The nonlinear response at field amplitudes above 1 kV cm-1 is in the carrier-wave Rabi flopping regime with a pronounced coupling of the graphene layers via the radiation field. Theoretical calculations account for the experimental results.

Loading...
Thumbnail Image
Item

Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation

2015, Buchner, Franziska, Nakayama, Akira, Yamazaki, Shohei, Ritze, Hans-Hermann, Lübcke, Andrea

Time-resolved photoelectron spectroscopy is performed on thymine and thymidine in aqueous solution to study the excited-state relaxation dynamics of these molecules. We find two contributions with sub-ps lifetimes in line with recent excited-state QM/MM molecular dynamics simulations (J. Chem. Phys.2013, 139, 214304). The temporal evolution of ionization energies for the excited ππ* state along the QM/MM molecular dynamics trajectories were calculated and are compatible with experimental results, where the two contributions correspond to the relaxation paths in the ππ* state involving different conical intersections with the ground state. Theoretical calculations also show that ionization from the nπ* state is possible at the given photon energies, but we have not found any experimental indication for signal from the nπ* state. In contrast to currently accepted relaxation mechanisms, we suggest that the nπ* state is not involved in the relaxation process of thymine in aqueous solution.

Loading...
Thumbnail Image
Item

CpCo(i) precatalysts for [2 + 2 + 2] cycloaddition reactions : Synthesis and reactivity

2020, Fischer, Fabian, Pientka, Tobias, Jiao, Haijun, Spannenberg, Anke, Hapke, Marko

The efficient synthesis and structural characterisation of a series of novel CpCo(i)-olefin-phosphite/phosphoramidite complexes and their evaluation in catalytic cyclotrimerisation reactions are reported. The protocol for precatalyst synthesis is widely applicable to different P-containing ligands, especially phosphites and phosphoramidites, as well as acyclic and cyclic olefins. A selection of the prepared complexes was investigated towards their catalytic performance in [2 + 2 + 2] cycloaddition reactions of diynes and nitriles, as well as triynes. While revealing significant differences in reactivity, the most reactive precatalysts work even already at 75 °C. One of these precatalysts also proved its potential in exemplary (co)cyclotrimerisations towards functionalised pyridines and benzenes. The energetics of complex formation and exemplary ligand exchange with a substrate diyne were elucidated by theoretical calculations and compared with the catalytic reactivity. © 2020 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Electronic transitions and dielectric function tensor of a YMnO3 single crystal in the NIR-VUV spectral range

2014, Schmidt-Grund, R., Richter, S., Ebbinghaus, S.G., Lorenz, M., Bundesmann, C., Grundmann, M.

We present optical properties in the near-infrared to vacuum-ultraviolet spectral range of hexagonal YMnO3. The high-quality (110)-oriented bulk single crystal was grown by the optical floating zone technique. We have determined the tensor of the dielectric function by means of Mueller matrix ellipsometry in the wide spectral range (0.5-9.15) eV. For the spectral range below 5.4 eV, we present much more precise data compared to previous reports. For higher energies no experimental reports were given previously. The experimental dielectric function of YMnO3 agrees generally with theoretical calculations. We found the well known transitions involving hybridized oxygen-Mn states and Mn-3d states to be spectrally localized with a homogeneous Lorentzian lineshape. At energies above these transitions, we observe pseudo-transparent points where for each of the principal diagonal elements of the dielectric function tensor the imaginary part approaches zero but at different photon energies. These are followed at the onset of the high-absorption spectral range by parabolic direct band-band transitions which have not been reported so far.

Loading...
Thumbnail Image
Item

(BB)-Carboryne Complex of Ruthenium: Synthesis by Double B-H Activation at a Single Metal Center

2016, Eleazer, Bennett J., Smith, Mark D., Popov, Alexey A., Peryshkov, Dmitry V.

The first example of a transition metal (BB)-carboryne complex containing two boron atoms of the icosahedral cage connected to a single exohedral metal center (POBBOP)Ru(CO)2 (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) was synthesized by double B-H activation within the strained m-carboranyl pincer framework. Theoretical calculations revealed that the unique three-membered (BB)>Ru metalacycle is formed by two bent B-Ru σ-bonds with the concomitant increase of the bond order between the two metalated boron atoms. The reactivity of the highly strained electron-rich (BB)-carboryne fragment with small molecules was probed by reactions with electrophiles. The carboryne-carboranyl transformations reported herein represent a new mode of cooperative metal-ligand reactivity of boron-based complexes.

Loading...
Thumbnail Image
Item

Dynamically tuned non-classical light emission from atomic defects in hexagonal boron nitride

2019, Lazić, Snežana, Espinha, André, Yanguas, Sergio Pinilla, Gibaja, Carlos, Zamora, Félix, Ares, Pablo, Chhowalla, Manish, Paz, Wendel S., Palacios Burgos, Juan José, Hernández-Mínguez, Alberto, Santos, Paulo V., van der Meulen, Herko P.

Luminescent defects in hexagonal boron nitride (h-BN) have recently emerged as a promising platform for non-classical light emission. On-chip solutions, however, require techniques for controllable in-situ manipulation of quantum light. Here, we demonstrate the dynamic spectral and temporal tuning of the optical emission from h-BN via moving acousto-mechanical modulation induced by stimulated phonons. When perturbed by the propagating acoustic phonon, the optically probed radiative h-BN defects are periodically strained and their sharp emission lines are modulated by the deformation potential coupling. This results in an acoustically driven spectral tuning within a 2.5-meV bandwidth. Our findings, supported by first-principles theoretical calculations, reveal exceptionally high elasto-optic coupling in h-BN of ~50 meV/%. Temporal control of the emitted photons is achieved by combining the acoustically mediated fine-spectral tuning with spectral detection filtering. This study opens the door to the use of sound for scalable integration of h-BN emitters in nanophotonic and quantum information technologies. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F(-) + CH3I

2016, Carrascosa, Eduardo, Michaelsen, Tim, Stei, Martin, Bastian, Björn, Meyer, Jennifer, Mikosch, Jochen, Wester, Roland

Ion–molecule reactions of the type X– + CH3Y are commonly assumed to produce Y– through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F– + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I– is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF– via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI]− product ion. This [FHI]− product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I–. A similar trend is observed for the isoelectronic OH– + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy.