Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Modified powder-in-tube technique based on the consolidation processing of powder materials for fabricating specialty optical fibers

2014, Auguste, J.-L., Humbert, G., Leparmentier, S., Kudinova, M., Martin, P.-O., Delaizir, G., Schuster, K., Litzkendorf, D.

The objective of this paper is to demonstrate the interest of a consolidation process associated with the powder-in-tube technique in order to fabricate a long length of specialty optical fibers. This so-called Modified Powder-in-Tube (MPIT) process is very flexible and paves the way to multimaterial optical fiber fabrications with different core and cladding glassy materials. Another feature of this technique lies in the sintering of the preform under reducing or oxidizing atmosphere. The fabrication of such optical fibers implies different constraints that we have to deal with, namely chemical species diffusion or mechanical stress due to the mismatches between thermal expansion coefficients and working temperatures of the fiber materials. This paper focuses on preliminary results obtained with a lanthano-aluminosilicate glass used as the core material for the fabrication of all-glass fibers or specialty Photonic Crystal Fibers (PCFs). To complete the panel of original microstructures now available by the MPIT technique, we also present several optical fibers in which metallic particles or microwires are included into a silica-based matrix.

Loading...
Thumbnail Image
Item

Selective area growth of AlGaN nanopyramid arrays on graphene by metal-organic vapor phase epitaxy

2018, Munshi, A. Mazid, Kim, Dong-Chul, Heimdal, Carl Philip, Heilmann, Martin, Christiansen, Silke H., Vullum, Per Erik, van Helvoort, Antonius T. J., Weman, Helge

Wide-bandgap group III-nitride semiconductors are of special interest for applications in ultraviolet light emitting diodes, photodetectors, and lasers. However, epitaxial growth of high-quality III-nitride semiconductors on conventional single-crystalline substrates is challenging due to the lattice mismatch and differences in the thermal expansion coefficients. Recently, it has been shown that graphene, a two-dimensional material, can be used as a substrate for growing high-quality III-V semiconductors via quasi-van der Waals epitaxy and overcome the named challenges. Here, we report selective area growth of AlGaN nanopyramids on hole mask patterned single-layer graphene using metal-organic vapor phase epitaxy. The nanopyramid bases have a hexagonal shape with a very high nucleation yield. After subsequent AlGaN/GaN/AlGaN overgrowth on the six {10 (1) over bar1} semi-polar side facets of the nanopyramids, intense room-temperature cathodoluminescence emission is observed at 365 nm with whispering gallery-like modes. This work opens up a route for achieving III-nitride opto-electronic devices on graphene substrates in the ultraviolet region for future applications.

Loading...
Thumbnail Image
Item

Development of Ni-Sr(V,Ti)O3-δ Fuel Electrodes for Solid Oxide Fuel Cells

2021, Serôdio Costa, Bernardo F., Arias-Serrano, Blanca I., Yaremchenko, Aleksey A.

A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials for solid oxide fuel cells. Detailed phase evolution studies using XRD and SEM/EDS demonstrated that firing at temperatures as high as 1200◦C is required to eliminate undesirable secondary phases. Under such conditions, nickel tends to segregate as a metallic phase and is unlikely to incorporate into the perovskite lattice. Ceramic samples sintered at 1500◦C ex-hibited temperature-activated electrical conductivity that showed a weak p(O2 ) dependence and increased with vanadium content, reaching a maximum of ~17 S/cm at 1000◦C. STVN ceramics showed moderate thermal expansion coefficients (12.5–14.3 ppm/K at 25–1100◦C) compatible with that of yttria-stabilized zirconia (8YSZ). Porous STVN electrodes on 8YSZ solid electrolytes were fabricated at 1100◦C and studied using electrochemical impedance spectroscopy at 700–900◦C in an atmosphere of diluted humidified H2 under zero DC conditions. As-prepared STVN electrodes demonstrated comparatively poor electrochemical performance, which was attributed to insufficient intrinsic electrocatalytic activity and agglomeration of metallic nickel during the high-temperature synthetic procedure. Incorporation of an oxygen-ion-conducting Ce0.9Gd0.1O2-δ phase (20–30 wt.%) and nano-sized Ni as electrocatalyst (≥1 wt.%) into the porous electrode structure via infiltration re-sulted in a substantial improvement in electrochemical activity and reduction of electrode polarization resistance by 6–8 times at 900◦C and ≥ one order of magnitude at 800◦C.

Loading...
Thumbnail Image
Item

Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic α-Cu2V2O7

2018, Wang, L., Werner, J., Ottmann, A., Weis, R., Abdel-Hafiez, M., Sannigrahi, J., Majumdar, S., Koo, C., Klingeler, R.

We investigate magnetoelectric coupling and low-energy magnetic excitations in multiferroic α-Cu2V2O7 by detailed thermal expansion, magnetostriction, specific heat and magnetization measurements in magnetic fields up to 15 T and by high-field/high-frequency electron spin resonance studies. Our data show negative thermal expansion in the temperature range ≤200 K under study. Well-developed anomalies associated with the onset of multiferroic order (canted antiferromagnetism with a significant magnetic moment and ferroelectricity) imply pronounced coupling to the structure. We detect anomalous entropy changes in the temperature regime up to ∼80 K which significantly exceed the spin entropy. Failure of Grüneisen scaling further confirms that several dominant ordering phenomena are concomitantly driving the multiferroic order. By applying external magnetic fields, anomalies in the thermal expansion and in the magnetization are separated. Noteworthy, the data clearly imply the development of a canted magnetic moment at temperatures above the structural anomaly. Low-field magnetostriction supports the scenario of exchange-striction driven multiferroicity. We observe low-energy magnetic excitations well below the antiferromagnetic gap, i.e., a ferromagnetic-type resonance branch associated with the canted magnetic moment arising from Dzyaloshinsii-Moriya (DM) interactions. The anisotropy parameter meV indicates a sizeable ratio of DM- and isotropic magnetic exchange.

Loading...
Thumbnail Image
Item

A novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures

2010, Giussani, A., Zaumseil, P., Seifarth, O., Storck, P., Schroeder, T.

Epitaxial (epi) oxides on silicon can be used to integrate novel device concepts on the canonical Si platform, including functional oxides, e.g. multiferroics, as well as alternative semiconductor approaches. For all these applications, the quality of the oxide heterostructure is a key figure of merit. In this paper, it is shown that, by co-evaporating Y2O3 and Pr2O3 powder materials, perfectly lattice-matched PrYO3(111) epilayers with bixbyite structure can be grown on Si(111) substrates. A high-resolution x-ray diffraction analysis demonstrates that the mixed oxide epi-films are single crystalline and type B oriented. Si epitaxial overgrowth of the PrYO3(111)/Si(111) support system results in flat, continuous and fully lattice-matched epi-Si(111)/PrYO3(111)/Si(111) silicon-on-insulator heterostructures. Raman spectroscopy proves the strain-free nature of the epi-Si films. A Williamson-Hall analysis of the mixed oxide layer highlights the existence of structural defects in the buffer, which can be explained by the thermal expansion coefficients of Si and PrYO3. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.