Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Ultrahigh Power Factor in Thermoelectric System Nb0.95M0.05FeSb (M = Hf, Zr, and Ti)

2018, Ren, W., Zhu, H., Zhu, Q., Saparamadu, U., He, R., Liu, Z., Mao, J., Wang, C., Nielsch, K., Wang, Z., Ren, Z.

Conversion efficiency and output power are crucial parameters for thermoelectric power generation that highly rely on figure of merit ZT and power factor (PF), respectively. Therefore, the synergistic optimization of electrical and thermal properties is imperative instead of optimizing just ZT by thermal conductivity reduction or just PF by electron transport enhancement. Here, it is demonstrated that Nb0.95Hf0.05FeSb has not only ultrahigh PF over ≈100 µW cm−1 K−2 at room temperature but also the highest ZT in a material system Nb0.95M0.05FeSb (M = Hf, Zr, Ti). It is found that Hf dopant is capable to simultaneously supply carriers for mobility optimization and introduce atomic disorder for reducing lattice thermal conductivity. As a result, Nb0.95Hf0.05FeSb distinguishes itself from other outstanding NbFeSb-based materials in both the PF and ZT. Additionally, a large output power density of ≈21.6 W cm−2 is achieved based on a single-leg device under a temperature difference of ≈560 K, showing the realistic prospect of the ultrahigh PF for power generation.

Loading...
Thumbnail Image
Item

Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance

2020, Pan, Yu, Yao, Mengyu, Hong, Xiaochen, Zhu, Yifan, Fan, Fengren, Imasato, Kazuki, He, Yangkun, Hess, Christian, Fink, Jörg, Yang, Jiong, Büchner, Bernd, Fu, Chenguang, Snyder, G. Jeffrey, Felser, Claudia

The rapid growth of the thermoelectric cooler market makes the development of novel room temperature thermoelectric materials of great importance. Ternary n-type Mg3(Bi,Sb)2 alloys are promising alternatives to the state-of-the-art Bi2(Te,Se)3 alloys but grain boundary resistance is the most important limitation. n-type Mg3(Bi,Sb)2 single crystals with negligible grain boundaries are expected to have particularly high zT but have rarely been realized due to the demanding Mg-rich growth conditions required. Here, we report, for the first time, the thermoelectric properties of n-type Mg3(Bi,Sb)2 alloyed single crystals grown by a one-step Mg-flux method using sealed tantalum tubes. High weighted mobility ∼140 cm2 V−1 s−1 and a high zT of 0.82 at 315 K are achieved in Y-doped Mg3Bi1.25Sb0.75 single crystals. Through both experimental angle-resolved photoemission spectroscopy and theoretical calculations, we denote the origin of the high thermoelectric performance from a point of view of band widening effect and electronegativity, as well as the necessity to form high Bi/Sb ratio ternary Mg3(Bi,Sb)2 alloys. The present work paves the way for further development of Mg3(Bi,Sb)2 for near room temperature thermoelectric applications.

Loading...
Thumbnail Image
Item

Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics

2021, Zhu, Taishan, He, Ran, Gong, Sheng, Xie, Tian, Gorai, Prashun, Nielsch, Kornelius, Grossman, Jeffrey C.

Thermoelectric power generation represents a promising approach to utilize waste heat. The most effective thermoelectric materials exhibit low thermal conductivity κ. However, less than 5% out of about 105 synthesized inorganic materials are documented with their κ values, while for the remaining 95% κ values are missing and challenging to predict. In this work, by combining graph neural networks and random forest approaches, we predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database, and chart the structural chemistry of κ into extended van-Arkel triangles. Together with the newly developed κ map and our theoretical tool, we identify rare-earth chalcogenides as promising candidates, of which we measured ZT exceeding 1.0. We note that the κ chart can be further explored, and our computational and analytical tools are applicable generally for materials informatics.