Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields

2008, Kling, M.F., Rauschenberger, J., Verhoef, A.J., Hasović, E., Uphues, T., Milošević, D.B., Muller, H.G., Vrakking, M.J.J.

Sub-femtosecond control of the electron emission in above-threshold ionization of the rare gases Ar, Xe and Kr in intense few-cycle laser fields is reported with full angular resolution. Experimental data that were obtained with the velocity-map imaging technique are compared to simulations using the strong-field approximation (SFA) and full time-dependent Schrödinger equation (TDSE) calculations. We find a pronounced asymmetry in both the energy and angular distributions of the electron emission that critically depends on the carrier-envelope phase (CEP) of the laser field. The potential use of imaging techniques as a tool for single-shot detection of the CEP is discussed. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Interference structure of above-threshold ionization versus above-threshold detachment

2012, Korneev, Ph.A., Popruzhenko, S.V., Goreslavski, S.P., Becker, W., Paulus, G.G., Fetić, B., Milošević, D.B.

Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for nearperpendicular emission the qualitative appearance of the spectrum is unaffected.

Loading...
Thumbnail Image
Item

Dynamics of graphene growth on a metal surface: A time-dependent photoemission study

2009, Grüneis, Alexander, Kummer, Kurt, Vyalikh, Denis V.

Applying time-dependent photoemission we unravel the graphene growth process on a metallic surface by chemical vapor deposition (CVD). Graphene CVD growth is in stark contrast to the standard growth process of two-dimensional films because it is self-limiting and stops as soon as a monolayer of graphene has been synthesized. Most importantly, a novel phase of metastable graphene was discovered that is characterized by permanent and simultaneous construction and deconstruction. The high quality and large area graphene flakes are characterized by angle-resolved photoemission, proving that they are indeed monolayer and cover the whole 1×1 cm Ni(111) substrate. These findings are of high relevance to the intensive search for reliable synthesis methods for large graphene flakes of controlled layer number.