Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Two-dimensional ferromagnetic extension of a topological insulator

2023, Kagerer, P., Fornari, C. I., Buchberger, S., Tschirner, T., Veyrat, L., Kamp, M., Tcakaev, A. V., Zabolotnyy, V., Morelhão, S. L., Geldiyev, B., Müller, S., Fedorov, A., Rienks, E., Gargiani, P., Valvidares, M., Folkers, L. C., Isaeva, A., Büchner, B., Hinkov, V., Claessen, R., Bentmann, H., Reinert, F.

Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a three-dimensional (3D) topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface, as through proximity of a ferromagnetic (FM) layer. However, experimental evidence of such a proximity-induced Dirac mass gap is missing, likely due to an insufficient overlap of TSS and the FM subsystem. Here, we take a different approach, namely ferromagnetic extension (FME), using a thin film of the 3D TI Bi2Te3, interfaced with a monolayer of the lattice-matched van der Waals ferromagnet MnBi2Te4. Robust 2D ferromagnetism with out-of-plane anisotropy and a critical temperature of Tc≈15 K is demonstrated by x-ray magnetic dichroism and electrical transport measurements. Using angle-resolved photoelectron spectroscopy, we observe the opening of a sizable magnetic gap in the 2D FM phase, while the surface remains gapless in the paramagnetic phase above Tc. Ferromagnetic extension paves the way to explore the interplay of strictly 2D magnetism and topological surface states, providing perspectives for realizing robust quantum anomalous Hall and chiral Majorana states.

Loading...
Thumbnail Image
Item

Disorder-induced coupling of Weyl nodes in WTe2

2020, Sykora, Steffen, Schoop, Johannes, Graf, Lukas, Shipunov, Grigory, Morozov, Igor V., Aswartham, Saicharan, Büchner, Bernd, Hess, Christian, Giraud, Romain, Dufouleur, Joseph

The finite coupling between Weyl nodes due to residual disorder is investigated by magnetotransport studies in WTe2. The anisotropic scattering of quasiparticles is evidenced from classical and quantum transport measurements. A theoretical approach using the real band structure is developed in order to calculate the dependence of the scattering anisotropy with the correlation length of the disorder. A comparison between theory and experiments reveals a short correlation length in WTe2 (ξ∼5 nm). This result implies a significant coupling between Weyl nodes and other bands. Our study thus shows that a finite intercone scattering rate always exists in weakly disordered type-II Weyl semimetals, such as WTe2, which strongly suppresses topologically nontrivial properties.

Loading...
Thumbnail Image
Item

Chirality flip of Weyl nodes and its manifestation in strained MoTe2

2021, Könye, Viktor, Bouhon, Adrien, Fulga, Ion Cosma, Slager, Robert-Jan, van den Brink, Jeroen, Facio, Jorge I.

Due to their topological charge, or chirality, the Weyl cones present in topological semimetals are considered robust against arbitrary perturbations. One well-understood exception to this robustness is the pairwise creation or annihilation of Weyl cones, which involves the overlap of two oppositely charged nodes in energy and momentum. Here we show that their topological charge can in fact change sign, in a process that involves the merging of not two, but three Weyl nodes. This is facilitated by the presence of rotation and time-reversal symmetries, which constrain the relative positions of Weyl cones in momentum space. We analyze the chirality flip process, showing that transport properties distinguish it from the conventional, double Weyl merging. Moreover, we predict that the chirality flip occurs in MoTe$_2$, where experimentally accessible strain leads to the merging of three Weyl cones close to the Fermi level. Our work sets the stage to further investigate and observe such chirality flipping processes in different topological materials.

Loading...
Thumbnail Image
Item

Creating Weyl nodes and controlling their energy by magnetization rotation

2020, Ghimire, Madhav Prasad, Facio, Jorge I., You, Jhih-Shih, Ye, Linda, Checkelsky, Joseph G., Fang, Shiang, Kaxiras, Efthimios, Richter, Manuel, van den Brink, Jeroen

As they do not rely on the presence of any crystal symmetry, Weyl nodes are robust topological features of an electronic structure that can occur at any momentum and energy. Acting as sinks and sources of Berry curvature, Weyl nodes have been predicted to strongly affect the transverse electronic response, like in the anomalous Hall or Nernst effects. However, to observe large anomalous effects the Weyl nodes need to be close to or at the Fermi level, which implies the band structure must be tuned by an external parameter, e.g., chemical doping. Here we show that in a ferromagnetic metal tuning of the Weyl node energy and momentum can be achieved by rotation of the magnetization. First, taking as example the elementary magnet hcp-Co, we use electronic structure calculations based on density-functional theory to show that by canting the magnetization away from the easy axis, Weyl nodes can be driven exactly to the Fermi surface. Second, we show that the same phenomenology applies to the kagome ferromagnet Co3Sn2S2, in which we additionally show how the dynamics in energy and momentum of the Weyl nodes affects the calculated anomalous Hall and Nernst conductivities. Our results highlight how the intrinsic magnetic anisotropy can be used to engineer Weyl physics.

Loading...
Thumbnail Image
Item

Comprehensive scan for nonmagnetic Weyl semimetals with nonlinear optical response

2020, Xu, Q., Zhang, Y., Koepernik, K., Shi, W., van den Brink, J., Felser, C., Sun, Y.

First-principles calculations have recently been used to develop comprehensive databases of nonmagnetic topological materials that are protected by time-reversal or crystalline symmetry. However, owing to the low symmetry requirement of Weyl points, a symmetry-based approach to identifying topological states cannot be applied to Weyl semimetals (WSMs). To date, WSMs with Weyl points in arbitrary positions are absent from the well-known databases. In this work, we develop an efficient algorithm to search for Weyl points automatically and establish a database of nonmagnetic WSMs with Weyl points near the Fermi level based on the experimental non-centrosymmetric crystal structures in the Inorganic Crystal Structure Database (ICSD). In total, 46 Weyl semimetals were discovered to have nearly clean Fermi surfaces and Weyl points within 300 meV of the Fermi level. Nine of them are chiral structures which may exhibit the quantized circular photogalvanic effect. In addition, the nonlinear optical response is studied and the giant shift current is explored. Besides nonmagnetic WSMs, our powerful tools can also be used in the discovery of magnetic topological materials.