Search Results

Now showing 1 - 9 of 9
  • Item
    The influence of the in-plane lattice constant on the superconducting transition temperature of FeSe0.7Te0.3 thin films
    (New York : American Institute of Physics, 2017) Yuan, Feifei; Iida, Kazumasa; Grinenko, Vadim; Chekhonin, Paul; Pukenas, Aurimas; Skrotzki, Werner; Sakoda, Masahito; Naito, Michio; Sala, Alberto; Putti, Marina; Yamashita, Aichi; Takano, Yoshihiko; Shi, Zhixiang; Nielsch, Kornelius; Hühne, Ruben
    Epitaxial Fe(Se,Te) thin films were prepared by pulsed laser deposition on (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT), CaF2-buffered LSAT and bare CaF2 substrates, which exhibit an almost identical in-plane lattice parameter. The composition of all Fe(Se,Te) films were determined to be FeSe0.7Te0.3 by energy dispersive X-ray spectroscopy, irrespective of the substrate. Albeit the lattice parameters of all templates have comparable values, the in-plane lattice parameter of the FeSe0.7Te0.3 films varies significantly. We found that the superconducting transition temperature (Tc) of FeSe0.7Te0.3 thin films is strongly correlated with their a-axis lattice parameter. The highest Tc of over 19 K was observed for the film on bare CaF2 substrate, which is related to unexpectedly large in-plane compressive strain originating mostly from the thermal expansion mismatch between the FeSe0.7Te0.3 film and the substrate.
  • Item
    Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Xu, X.; Prüfer, T.; Wolf, D.; Engelmann, H.-J.; Bischoff, L.; Hübner, R.; Heinig, K.-H.; Möller, W.; Facsko, S.; von Borany, J.; Hlawacek, G.
    For future nanoelectronic devices - such as room-temperature single electron transistors - the site-controlled formation of single Si nanocrystals (NCs) is a crucial prerequisite. Here, we report an approach to fabricate single Si NCs via medium-energy Si+ or Ne+ ion beam mixing of Si into a buried SiO2 layer followed by thermally activated phase separation. Binary collision approximation and kinetic Monte Carlo methods are conducted to gain atomistic insight into the influence of relevant experimental parameters on the Si NC formation process. Energy-filtered transmission electron microscopy is performed to obtain quantitative values on the Si NC size and distribution in dependence of the layer stack geometry, ion fluence and thermal budget. Employing a focused Ne+ beam from a helium ion microscope, we demonstrate site-controlled self-assembly of single Si NCs. Line irradiation with a fluence of 3000 Ne+/nm2 and a line width of 4 nm leads to the formation of a chain of Si NCs, and a single NC with 2.2 nm diameter is subsequently isolated and visualized in a few nanometer thin lamella prepared by a focused ion beam (FIB). The Si NC is centered between the SiO2 layers and perpendicular to the incident Ne+ beam.
  • Item
    Direct observation of nanocrystal-induced enhancement of tensile ductility in a metallic glass composite
    (Amsterdam [u.a.] : Elsevier Science, 2021) Gammer, Christoph; Rentenberger, Christian; Beitelschmidt, Denise; Minor, Andrew M.; Eckert, Jürgen
    Bulk metallic glasses (BMGs) have attracted wide interest, but their successful application is hindered by their low ductility at room temperature. Therefore, the use of composites of a BMG matrix with crystalline secondary phases has been proposed to overcome this drawback. In the present work we demonstrate the fabrication of a tailored BMG nanocomposite containing a high density of monodisperse nanocrystals with a size of around 20 nm using a combination of mechanical and thermal treatment of Cu36Zr48Al8Ag8 well below the crystallization temperature. Direct observations of the interaction of the nanocrystals with a shear band during in situ deformation in a transmission electron microscope demonstrate that the achieved nanocomposite has the potential to inhibit catastrophic fracture in tension. This demonstrates that a sufficient number of nanoscale structural heterogeneities can be a route towards BMG composites with superior mechanical properties.
  • Item
    Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation
    (Cambridge : RSC Publ., 2021) Mendes, Rafael G.; Ta, Huy Q.; Yang, Xiaoqin; Bachmatiuk, Alicja; Praus, Petr; Mamakhel, Aref; Iversen, Bo B.; Su, Ren; Gemming, Thomas; Rümmeli, Mark H.
    Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species. However, the precise nitrogen group from which N is removed from g-C3N4 (C–N–C, [double bond, length as m-dash]NH or –NH2) is unclear. Moreover, the rate of degradation increases with decreasing electron acceleration voltage, suggesting that inelastic scattering events (radiolysis) dominate over elastic events (knock-on damage). The rate of degradation by removing N atoms is also sensitive to the current density. Hence, we demonstrate that both the electron acceleration voltage and the current density are parameters with which one can use to control the stoichiometry. Moreover, as N species were preferentially removed, the d-spacing of the carbon nitride structure increased. These findings provide a deeper understanding of g-C3N4.
  • Item
    Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics
    ([London] : Nature Publishing Group UK, 2022) Huber, R.; Kern, F.; Karnaushenko, D.D.; Eisner, E.; Lepucki, P.; Thampi, A.; Mirhajivarzaneh, A.; Becker, C.; Kang, T.; Baunack, S.; Büchner, B.; Karnaushenko, D.; Schmidt, O.G.; Lubk, A.
    Tunable electromagnets and corresponding devices, such as magnetic lenses or stigmators, are the backbone of high-energy charged particle optical instruments, such as electron microscopes, because they provide higher optical power, stability, and lower aberrations compared to their electric counterparts. However, electromagnets are typically macroscopic (super-)conducting coils, which cannot generate swiftly changing magnetic fields, require active cooling, and are structurally bulky, making them unsuitable for fast beam manipulation, multibeam instruments, and miniaturized applications. Here, we present an on-chip microsized magnetic charged particle optics realized via a self-assembling micro-origami process. These micro-electromagnets can generate alternating magnetic fields of about ±100 mT up to a hundred MHz, supplying sufficiently large optical power for a large number of charged particle optics applications. That particular includes fast spatiotemporal electron beam modulation such as electron beam deflection, focusing, and wave front shaping as required for stroboscopic imaging.
  • Item
    New Insight on the Hydrogen Absorption Evolution of the Mg–Fe–H System under Equilibrium Conditions
    (Basel : MDPI, 2018-11-19) Puszkiel, Julián; Castro Riglos, M. Victoria; Ramallo-López, José; Mizrahi, Martin; Gemming, Thomas; Pistidda, Claudio; Arneodo Larochette, Pierre; Bellosta von Colbe, José; Klassen, Thomas; Dornheim, Martin; Gennari, Fabiana
    Mg2FeH6 is regarded as potential hydrogen and thermochemical storage medium due to its high volumetric hydrogen (150 kg/m3) and energy (0.49 kWh/L) densities. In this work, the mechanism of formation of Mg2FeH6 under equilibrium conditions is thoroughly investigated applying volumetric measurements, X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and the combination of scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Starting from a 2Mg:Fe stoichiometric powder ratio, thorough characterizations of samples taken at different states upon hydrogenation under equilibrium conditions confirm that the formation mechanism of Mg2FeH6 occurs from elemental Mg and Fe by columnar nucleation of the complex hydride at boundaries of the Fe seeds. The formation of MgH2 is enhanced by the presence of Fe. However, MgH2 does not take part as intermediate for the formation of Mg2FeH6 and acts as solid-solid diffusion barrier which hinders the complete formation of Mg2FeH6. This work provides novel insight about the formation mechanism of Mg2FeH6.
  • Item
    Single-crystalline FeCo nanoparticle-filled carbon nanotubes: Synthesis, structural characterization and magnetic properties
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Ghunaim, R.; Scholz, M.; Damm, C.; Rellinghaus, B.; Klingeler, R.; Büchner, B.; Mertig, M.; Hampel, S.
    In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.
  • Item
    Chiral surface twists and Skyrmion stability in nanolayers of cubic helimagnets
    (College Park : American Physical Society, 2016) Leonov, A. O.; Togawa, Y.; Monchesky, T. L.; Bogdanov, A. N.; Kishine, J.; Kousaka, Y.; Miyagawa, M.; Koyama, T.; Akimitsu, J.; Koyama, Ts.; Harada, K.; Mori, S.; McGrouther, D.; Lamb, R.; Krajnak, M.; McVitie, S.; Stamps, R. L.; Inoue, K.
    Theoretical analysis and Lorentz transmission electron microscopy (LTEM) investigations in an FeGe wedge demonstrate that chiral twists arising near the surfaces of noncentrosymmetric ferromagnets [Meynell et al., Phys. Rev. B 90, 014406 (2014)] provide a stabilization mechanism for magnetic Skyrmion lattices and helicoids in cubic helimagnet nanolayers. The magnetic phase diagram obtained for freestanding cubic helimagnet nanolayers shows that magnetization processes differ fundamentally from those in bulk cubic helimagnets and are characterized by the first-order transitions between modulated phases. LTEM investigations exhibit a series of hysteretic transformation processes among the modulated phases, which results in the formation of the multidomain patterns.
  • Item
    Atom size electron vortex beams with selectable orbital angular momentum
    (London : Nature Publishing Group, 2017) Pohl, Darius; Schneider, Sebastian; Zeiger, Paul; Rusz, Ján; Tiemeijer, Peter; Lazar, Sorin; Nielsch, Kornelius; Rellinghaus, Bernd
    The decreasing size of modern functional magnetic materials and devices cause a steadily increasing demand for high resolution quantitative magnetic characterization. Transmission electron microscopy (TEM) based measurements of the electron energy-loss magnetic chiral dichroism (EMCD) may serve as the needed experimental tool. To this end, we present a reliable and robust electron-optical setup that generates and controls user-selectable single state electron vortex beams with defined orbital angular momenta. Our set-up is based on a standard high-resolution scanning TEM with probe aberration corrector, to which we added a vortex generating fork aperture and a miniaturized aperture for vortex selection. We demonstrate that atom size probes can be formed from these electron vortices and that they can be used for atomic resolution structural and spectroscopic imaging – both of which are prerequisites for future atomic EMCD investigations.