Search Results

Now showing 1 - 10 of 18
  • Item
    Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses
    (Les Ulis : EDP Sciences, 2013) Rosenfeld, A.; Höhm, S.; Bonse, J.; Krüger, J.
    The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.
  • Item
    Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics
    (Les Ulis : EDP Sciences, 2013) Grunwald, R.; Das, S.K.; Debroy, A.; McGlynn, E.; Messaoudi, H.
    Nonlinear excitation mechanisms of plasmons and their influence on femtosecond-laser induced sub-wavelength ripple generation on dielectric and semiconducting transparent materials are discussed. The agreement of theoretical and experimental data indicates the relevance of the model.
  • Item
    Ultrafast laser inscription of asymmetric integrated waveguide 3 dB couplers for astronomical K-band interferometry at the CHARA array
    (Washington, DC : Soc., 2021) Benoît, Aurélien; Pike, Fraser A.; Sharma, Tarun K.; MacLachlan, David G.; Dinkelaker, Aline N.; Nayak, Abani S.; Madhav, Kalaga; Roth, Martin M.; Labadie, Lucas; Pedretti, Ettore; Brummelaar, Theo A. ten; Scott, Nic; Coudé du Foresto, Vincent; Thomson, Robert R.
    We present the fabrication and characterization of 3 dB asymmetric directional couplers for the astronomical K-band at wavelengths between 2.0 and 2.4 µm. The couplers were fabricated in commercial Infrasil silica glass using an ultrafast laser operating at 1030 nm. After optimizing the fabrication parameters, the insertion losses of straight single-mode waveguides were measured to be ∼1.2±0.5dB across the full K-band. We investigate the development of asymmetric 3 dB directional couplers by varying the coupler interaction lengths and by varying the width of one of the waveguide cores to detune the propagation constants of the coupled modes. In this manner, we demonstrate that ultrafast laser inscription is capable of fabricating asymmetric 3 dB directional couplers for future applications in K-band stellar interferometry. Finally, we demonstrate that our couplers exhibit an interferometric fringe contrast of >90%. This technology paves the path for the development of a two-telescope K-band integrated optic beam combiner for interferometry to replace the existing beam combiner (MONA) in Jouvence of the Fiber Linked Unit for Recombination (JouFLU) at the Center for High Angular Resolution Astronomy (CHARA) telescope array.
  • Item
    Atomic and molecular suite of R-matrix codes for ultrafast dynamics in strong laser fields and electron/positron scattering
    (Bristol : IOP Publ., 2020) Wragg, J.; Benda, J.; Mašín, Z.; Armstrong, G.S.J.; Clarke, D.D.A.; Brown, A.C.; Ballance, C.; Harvey, A.G.; Houfek, K.; Sunderland, A.; Plummer, M.; Gorfinkiel, J.D.; Van Der Hart, H.
    We describe and illustrate a number of recent developments of the atomic and molecular ab initio R-matrix suites for both time-dependent calculations of ultrafast laser-induced dynamics and time-independentcalculations of photoionization and electron scattering. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Optimization of the energy deposition in glasses with temporally-shaped femtosecond laser pulses
    (Amsterdam [u.a.] : Elsevier, 2011) Mauclair, C.; Mishchik, K.; Mermillod-Blondin, A.; Rosenfeld, A.; Hertel, I.V.; Audouard, E.; Stoian, R.
    Bulk machining of glasses with femtosecond laser pulses enables the fabrication of embedded optical functions. Due to the nonlinear character of the laser-matter interaction, structural modifications can occur within the focal region. To reach a full control of the process, ways of controlling the deposition of the laser energy inside the material have to be unveiled. From static and time-resolved pictures of bulk-excitation of a-SiO2 and borosilicate glass, we show that particular laser temporal shapes such as picosecond sequences can better confine the energy deposition than the femtosecond sequence by reducing the propagation artifacts.
  • Item
    Supercontinuum generation in a carbon disulfide core microstructured optical fiber
    (Washington, DC : Soc., 2021) Junaid, Saher; Bierlich, Joerg; Hartung, Alexander; Meyer, Tobias; Chemnitz, Mario; Schmidt, Markus A.
    We demonstrate supercontinuum generation in a liquid-core microstructured optical fiber using carbon disulfide as the core material. The fiber provides a specific dispersion landscape with a zero-dispersion wavelength approaching the telecommunication domain where the corresponding capillary-type counterpart shows unsuitable dispersion properties for soliton fission. The experiments were conducted using two pump lasers with different pulse duration (30 fs and 90 fs) giving rise to different non-instantaneous contributions of carbon disulfide in each case. The presented results demonstrate an extraordinary high conversion efficiency from pump to soliton and to dispersive wave, overall defining a platform that enables studying the impact of non-instantaneous responses on ultrafast soliton dynamics and coherence using straightforward pump lasers and diagnostics.
  • Item
    High-order parametric generation of coherent XUV radiation
    (Washington, DC : Soc., 2021) Hort, O.; Dubrouil, A.; Khokhlova, M.A.; Descamps, D.; Petit, S.; Burgy, F.; Mével, E.; Constant, E.; Strelkov, V.V.
    Extreme ultraviolet (XUV) radiation finds numerous applications in spectroscopy. When the XUV light is generated via high-order harmonic generation (HHG), it may be produced in the form of attosecond pulses, allowing access to unprecedented ultrafast phenomena. However, the HHG efficiency remains limited. Here we present an observation of a new regime of coherent XUV emission which has a potential to provide higher XUV intensity, vital for applications. We explain the process by high-order parametric generation, involving the combined emission of THz and XUV photons, where the phase matching is very robust against ionization. This introduces a way to use higher-energy driving pulses, thus generating more XUV photons.
  • Item
    Propagator operator for pulse propagation in resonant media
    (Washington, DC : Soc., 2021) Morales, Felipe; Richter, Maria; Olvo, Vlad; Husakou, Anton
    We show that, for the case of resonant media, the available models for unidirectional propagation of short pulses can face serious challenges with respect to numerical efficiency, accuracy, or numerical artifacts. We propose an alternative approach based on a propagator operator defined in the time domain. This approach enables precise simulations using short time windows even for resonant media and facilitates coupling of the propagation equation with first-principle methods such as the time-dependent Schödinger equation. Additionally, we develop a numerically efficient recipe to construct and apply such a propagator operator.
  • Item
    Milliradian precision ultrafast pulse control for spectral phase metrology
    (Washington, DC : Soc., 2021) Stamm, Jacob; Benel, Jorge; Escoto, Esmerando; Steinmeyer, Günter; Dantus, Marcos
    A pulse-shaper-based method for spectral phase measurement and compression with milliradian precision is proposed and tested experimentally. Measurements of chirp and third-order dispersion are performed and compared to theoretical predictions. The single-digit milliradian accuracy is benchmarked by a group velocity dispersion measurement of fused silica.
  • Item
    Controlling optical trapping of metal–dielectric hybrid nanoparticles under ultrafast pulsed excitation: a theoretical investigation
    (Cambridge : Royal Society of Chemistry, 2021) Devi, Anita; Nair, Shruthi S.; Yadav, Sumit; De, Arijit K.
    Crucial to effective optical trapping is the ability to precisely control the nature of force/potential to be attractive or repulsive. The nature of particles being trapped is as important as the role of laser parameters in determining the stability of the optical trap. In this context, hybrid particles comprising of both dielectric and metallic materials offer a wide range of new possibilities due to their tunable optical properties. On the other hand, femtosecond pulsed excitation is shown to provide additional advantages in tuning of trap stiffness through harnessing optical and thermal nonlinearity. Here we demonstrate that (metal/dielectric hybrid) core/shell type and hollow-core type nanoparticles experience more force than conventional core-type nanoparticles under both continuous-wave and, in particular, ultrafast pulsed excitation. Thus, for the first time, we show how tuning both materials properties as well as the nature of excitation can impart unprecedented control over nanoscale optical trapping and manipulation leading to a wide range of applications.