Search Results

Now showing 1 - 10 of 15
  • Item
    Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses
    (Les Ulis : EDP Sciences, 2013) Rosenfeld, A.; Höhm, S.; Bonse, J.; Krüger, J.
    The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.
  • Item
    Subwavelength population density gratings in resonant medium created by few-cycle pulses
    (Bristol : IOP Publ., 2017) Arkhipov, R.M.; Arkhipov, M.V.; Pakhomov, A.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    We consider theoretically recently proposed a new possibility of creation, erasing and ultrafast control of population density grating. Such grating can be created in resonant medium when ultrashort pulses with duration smaller than relaxation times in the resonant medium (coherent light matter interactions) propagate without overlapping in this medium. Possible applications in the ultrafast optics such as optical switcher and laser beam deflector are discussed.
  • Item
    Optimization of the energy deposition in glasses with temporally-shaped femtosecond laser pulses
    (Amsterdam [u.a.] : Elsevier, 2011) Mauclair, C.; Mishchik, K.; Mermillod-Blondin, A.; Rosenfeld, A.; Hertel, I.V.; Audouard, E.; Stoian, R.
    Bulk machining of glasses with femtosecond laser pulses enables the fabrication of embedded optical functions. Due to the nonlinear character of the laser-matter interaction, structural modifications can occur within the focal region. To reach a full control of the process, ways of controlling the deposition of the laser energy inside the material have to be unveiled. From static and time-resolved pictures of bulk-excitation of a-SiO2 and borosilicate glass, we show that particular laser temporal shapes such as picosecond sequences can better confine the energy deposition than the femtosecond sequence by reducing the propagation artifacts.
  • Item
    Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO 2 nanospheres in intense few-cycle laser fields
    (Bristol : IOP, 2012) Zherebtsov, S.; Süßmann, F.; Peltz, C.; Plenge, J.; Betsch, K.J.; Znakovskaya, I.; Alnaser, A.S.; Johnson, N.G.; Kübel, M.; Horn, A.; Mondes, V.; Graf, C.; Trushin, S.A.; Azzeer, A.; Vrakking, M.J.J.; Paulus, G.G.; Krausz, F.; Rühl, E.; Fennel, T.; Kling, M.F.
    Waveform-controlled light fields offer the possibility of manipulating ultrafast electronic processes on sub-cycle timescales. The optical lightwave control of the collective electron motion in nanostructured materials is key to the design of electronic devices operating at up to petahertz frequencies. We have studied the directional control of the electron emission from 95 nm diameter SiO 2 nanoparticles in few-cycle laser fields with a well-defined waveform. Projections of the three-dimensional (3D) electron momentum distributions were obtained via single-shot velocity-map imaging (VMI), where phase tagging allowed retrieving the laser waveform for each laser shot. The application of this technique allowed us to efficiently suppress background contributions in the data and to obtain very accurate information on the amplitude and phase of the waveform-dependent electron emission. The experimental data that are obtained for 4 fs pulses centered at 720 nm at different intensities in the range (1-4)×10 13Wcm -2 are compared to quasi-classical mean-field Monte-Carlo simulations. The model calculations identify electron backscattering from the nanoparticle surface in highly dynamical localized fields as the main process responsible for the energetic electron emission from the nanoparticles. The local field sensitivity of the electron emission observed in our studies can serve as a foundation for future research on propagation effects for larger particles and field-induced material changes at higher intensities.
  • Item
    The new ultra high-speed all-optical coherent streak-camera
    (Bristol : IOP Publ., 2015) Arkhipov, R.M.; Arkhipov, M.V.; Egorov, V.S.; Chekhonin, I.A.; Chekhonin, M.A.; Bagayev, S.N.
    In the present paper a new type of ultra high-speed all-optical coherent streak-camera was developed. It was shown that a thin resonant film (quantum dots or molecules) could radiate the angular sequence of delayed ultra-short pulses if a transverse spatial periodic distribution of the laser pump field amplitude has a triangle shape.
  • Item
    Real-time observation of the optical Sagnac effect in ultrafast bidirectional fibre lasers
    (Melville, NY : AIP Publishing, 2020) Chernysheva, M.; Sugavanam, S.; Turitsyn, S.
    The optical Sagnac effect sets fundamentals of the operating principle for ring laser and fiber optic gyroscopes, which are preferred instruments for inertial guidance systems, seismology, and geodesy. Operating at both high bias stability and angular velocity resolutions demands special precautions like dithering or multimode operation to eliminate frequency lock-in or similar effects introduced due to synchronization of counterpropagating channels. Recently, to circumvent these limitations, ultrashort pulsed radiation was suggested to supersede conventional continuous wave operation. Despite the ultrafast nature of ultrashort pulse generation, the interrogation of the Sagnac effect relies on highly averaging measurement methods. Here, we demonstrate the novel approach to the optical Sagnac effect visualization by applying real-time spatiooral intensity processing and time-resolved spectral domain measurements of ultrashort pulse dynamics in rotating the bidirectional ring fiber laser cavity. Our results reveal the high potential of application of novel methods of optical Sagnac effect measurements, allowing enhancement of rotation sensitivity and resolution by several orders of magnitude. © 2020 Author(s).
  • Item
    Adaptive micro axicons for laser applications
    (Les Ulis : EDP Sciences, 2015) Wallrabe, Ulrike; Brunne, Jens; Treffer, Alexander; Grunwald, Ruediger; Bellouard, Yves
    We report on the design, fabrication and testing of novel types of low-dispersion axicons for the adaptive shaping of ultrashort laser pulses. An overview is given on the basic geometries and operating principles of our purely reflective adaptive MEMS-type devices based on thermal or piezoelectric actuation. The flexible formation of nondiffracting beams at pulse durations down to a few oscillations of the optical field enables new applications in optical communication, pulse diagnostics, laser-matter interaction and particle manipulation. As an example, we show first promising results of adaptive autocorrelation. The combination of excellent pulse transfer, self-reconstruction properties and propagation invariance of nondiffracting beams with an adaptive approach promises to extend the field of practical applications significantly.
  • Item
    Length distributed measurement of temperature effects in Yb-doped fibers during pumping
    (Bellingham : SPIE, 2014) Leich, M.; Fiebrandt, J.; Schwuchow, A.; Jetschke, S.; Unger, S.; Jäger, M.; Rothhardt, M.; Bartelt, H.
    We demonstrate a distributed measurement technique to observe temperature changes along pumped Yb-doped fibers. This technique is based on an array of fiber Bragg gratings acting as a temperature sensor line. The Bragg gratings are inscribed directly into the Yb-doped fiber core using high-intensity ultrashort laser pulses and an interferometric setup. We studied the temperature evolution in differently co-doped Yb fibers during optical pumping and identified different effects contributing to the observed temperature increase. We found that preloading of fibers with hydrogen supports the formation of Yb2+ during UV irradiation and has a large impact on fiber temperature during pumping. The proposed technique can be applied to investigate the homogeneity of pump absorption in active fibers and to support spatially resolved photodarkening measurements.
  • Item
    Few-cycle optical solitons in dispersive media beyond the envelope approximation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Amiranashvili, Shalva; Bandelow, Uwe; Akhmediev, Nail
    We study the propagation of few-cycle optical solitons in nonlinear media with an anomalous, but otherwise arbitrary, dispersion and a cubic nonlinearity. Our theory extends beyond the slowly varying envelope approximation. The optical field is derived directly from the Maxwell equations under the assumption that generation of the third harmonic is a non-resonant process or at least cannot destroy the pulse prior to inevitable linear damping. The solitary wave solutions are obtained numerically up to nearly single-cycle duration using a modification of the spectral renormalisation method originally developed for the envelope solitons.
  • Item
    The role of the self-steepening effect in soliton compression due to cross-phase modulation by dispersive waves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Pickartz, Sabrina
    We consider the compression and amplification of an ultrashort soliton pulse through the interaction with a weaker velocity-matched dispersive wave, in the so-called optical event horizon regime. We demonstrate that in this interaction scheme the self-steepening effect plays the key role in producing a strong soliton compression. While the interaction between the two pulses is mediated through cross phase modulation, the self-steepening effect produces an energy exchange, which enhances soliton compression. We provide numerical results and an analytical expression for energy transfer and compression rate.