Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies

2016, Davies, Heather S., Singh, Prabha, Deckert-Gaudig, Tanja, Deckert, Volker, Rousseau, Karine, Ridley, Caroline E., Dowd, Sarah E., Doig, Andrew J., Pudney, Paul D. A., Thornton, David J., Blanch, Ewan W.

The major structural components of protective mucus hydrogels on mucosal surfaces are the secreted polymeric gel-forming mucins. The very high molecular weight and extensive O-glycosylation of gel-forming mucins, which are key to their viscoelastic properties, create problems when studying mucins using conventional biochemical/structural techniques. Thus, key structural information, such as the secondary structure of the various mucin subdomains, and glycosylation patterns along individual molecules, remains to be elucidated. Here, we utilized Raman spectroscopy, Raman optical activity (ROA), circular dichroism (CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that the protein backbone of MUC5B is dominated by unordered conformation, which was found to originate from the heavily glycosylated central mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D′-D3 domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B) and the Cys-domain (within the central mucin domain of MUC5B) were found to be dominated by the β-sheet. Using these findings, we employed TERS, which combines the chemical specificity of Raman spectroscopy with the spatial resolution of atomic force microscopy to study the secondary structure along 90 nm of an individual MUC5B molecule. Interestingly, the molecule was found to contain a large amount of α-helix/unordered structures and many signatures of glycosylation, pointing to a highly O-glycosylated region on the mucin.

Loading...
Thumbnail Image
Item

On the numerical approximation of a viscoelastodynamic problem with unilateral constraints

2010, Petrov, Adrien, Martins, J.A.C.

The present work is dedicated to the study of numerical schemes for a viscoelastic bar vibrating longitudinally and having its motion limited by rigid obstacles at the both ends. Finite elements and finite difference schemes are presented and their convergence is proved. Finally, some numerical examples are reported and analyzed.

Loading...
Thumbnail Image
Item

Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

2013, Botelho, E.C., Costa, M.L., Braga, C.I., Burkhart, T., Laukee, B.

Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process.

Loading...
Thumbnail Image
Item

On the viscous dissipation caused by randomly rough indenters in smooth sliding motion

2021, Sukhomlinov, Sergey, Müser, Martin H.

The viscous dissipation between rigid, randomly rough indenters and linearly elastic counter bodies sliding past them is investigated using Green’s function molecular dynamics. The study encompasses a variety of models differing in the height spectra properties of the rigid indenter, in the viscoelasticity of the elastomer, and in their interaction. All systems reveal the expected damping linear in sliding velocity at small and a pronounced maximum at intermediate . Persson’s theory of rubber friction, which is adopted to the studied model systems, reflects all observed trends. However, close quantitative agreement is only found up to intermediate sliding velocities. Relative errors in the friction force become significant once the contact area is substantially reduced by sliding.