Search Results

Now showing 1 - 7 of 7
  • Item
    Freshwater resources under success and failure of the Paris climate agreement
    (Göttingen : Copernicus Publ., 2019) Heinke, Jens; Müller, Christoph; Lannerstad, Mats; Gerten, Dieter; Lucht, Wolfgang
    Population growth will in many regions increase the pressure on water resources and likely increase the number of people affected by water scarcity. In parallel, global warming causes hydrological changes which will affect freshwater supply for human use in many regions. This study estimates the exposure of future population to severe hydrological changes relevant from a freshwater resource perspective at different levels of global mean temperature rise above pre-industrial level (ΔTglob). The analysis is complemented by an assessment of water scarcity that would occur without additional climate change due to population change alone; this is done to identify the population groups that are faced with particularly high adaptation challenges. The results are analysed in the context of success and failure of implementing the Paris Agreement to evaluate how climate mitigation can reduce the future number of people exposed to severe hydrological change. The results show that without climate mitigation efforts, in the year 2100 about 4.9 billion people in the SSP2 population scenario would more likely than not be exposed to severe hydrological change, and about 2.1 billion of them would be faced with particularly high adaptation challenges due to already prevailing water scarcity. Limiting warming to 2 °C by a successful implementation of the Paris Agreement would strongly reduce these numbers to 615 million and 290 million, respectively. At the regional scale, substantial water-related risks remain at 2 °C, with more than 12% of the population exposed to severe hydrological change and high adaptation challenges in Latin America and the Middle East and north Africa region. Constraining δTglob to 1.5 °C would limit this share to about 5% in these regions. ©2019 Author(s).
  • Item
    Mechanism for potential strengthening of Atlantic overturning prior to collapse
    (München : European Geopyhsical Union, 2014) Ehlert, D.; Levermann, A.
    The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.
  • Item
    Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements
    (Göttingen : Copernicus GmbH, 2016) Fader, M.; Shi, S.; Von Bloh, W.; Bondeau, A.; Cramer, W.
  • Item
    Water savings potentials of irrigation systems: Global simulation of processes and linkages
    (Göttingen : Copernicus GmbH, 2015) Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.
  • Item
    Accounting for environmental flow requirements in global water assessments
    (Göttingen : Copernicus GmbH, 2014) Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P.
    As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90-Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90-Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46-71% of average low-flows) compared to high-flow periods (17-45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90-Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2 = 0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw up to 40% of the flow during the low-flow season and freshwater ecosystems can still be kept in reasonable ecological condition. The global applicability of the five methods was tested using the global vegetation and the Lund-Potsdam-Jena managed land (LPJmL) hydrological model. The calculated global annual EFRs for fair ecological conditions represent between 25 and 46% of mean annual flow (MAF). Variable flow regimes, such as the Nile, have lower EFRs (ranging from 12 to 48% of MAF) than stable tropical regimes such as the Amazon (which has EFRs ranging from 30 to 67% of MAF).
  • Item
    Comparison of water flows in four European lagoon catchments under a set of future climate scenarios
    (Basel : MDPI AG, 2015) Hesse, C.; Stefanova, A.; Krysanova, V.