Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

General scaling of maximum degree of synchronization in noisy complex networks

2014, Traxl, D., Boers, N., Kurths, J.

The effects of white noise and global coupling strength on the maximum degree of synchronization in complex networks are explored. We perform numerical simulations of generic oscillator models with both linear and non-linear coupling functions on a broad spectrum of network topologies. The oscillator models include the Fitzhugh-Nagumo model, the Izhikevich model and the Kuramoto phase oscillator model. The network topologies range from regular, random and highly modular networks to scale-free and small-world networks, with both directed and undirected edges. We then study the dependency of the maximum degree of synchronization on the global coupling strength and the noise intensity. We find a general scaling of the synchronizability, and quantify its validity by fitting a regression model to the numerical data.

Loading...
Thumbnail Image
Item

Elastic half plane under random boundary excitations

2008, Shalimova, Irina, Sabel'fel'd, Karl K.

We study in this paper a respond of an elastic half-plane to random boundary excitations. We treat both the white noise excitations and more generally, homogeneous random fluctuations of displacements prescribed on the boundary. Solutions to these problems are inhomogeneous random fields which are however homogeneous with respect to the longitudinal coordinate. This is used to represent the displacements as series expansions involving a complete set of deterministic functions with corresponding random coefficients. We construct the Karhunen-Loève (K-L) series expansion which is based on the eigen-decomposition of the correlation operator. The K-L expansion can be used to calculate the statistical characteristics of other functionals of interest, in particular, the strain and stress tensors and the elastic energy tensor.