2 results
Search Results
Now showing 1 - 2 of 2
- ItemSample chamber for synchrotron based in-situ X-ray diffraction experiments under electric fields and temperatures between 100 K and 1250 K(Chester : IUCr, 2021) Nentwich, Melanie; Weigel, Tina; Richter, Carsten; Stöcker, Hartmut; Mehner, Erik; Jachalke, Sven; Novikov, Dmitri V.; Zschornak, Matthias; Meyer, Dirk C.Many scientific questions require X-ray experiments conducted at varying temperatures, sometimes combined with the application of electric fields. Here, a customized sample chamber developed for beamlines P23 and P24 of PETRA III at DESY to suit these demands is presented. The chamber body consists mainly of standard vacuum parts housing the heater/cooler assembly supplying a temperature range of 100 K to 1250 K and an xyz manipulator holding an electric contact needle for electric measurements at both high voltage and low current. The chamber is closed by an exchangeable hemispherical dome offering all degrees of freedom for single-crystal experiments within one hemisphere of solid angle. The currently available dome materials (PC, PS, PEEK polymers) differ in their absorption and scattering characteristics, with PEEK providing the best overall performance. The article further describes heating and cooling capabilities, electric characteristics, and plans for future upgrades of the chamber. Examples of applications are discussed.
- ItemStrain engineering of ferroelectric domains in KxNa1−xNbO3 epitaxial layers(Lausanne : Frontiers Media, 2017) Schwarzkopf, Jutta; Braun, Dorothee; Hanke, Michael; Uecker, Reinhard; Schmidbauer, MartinThe application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i) Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3) are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii) In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii) A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110) NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory.