Search Results

Now showing 1 - 8 of 8
  • Item
    Plasma enhanced complete oxidation of ultrathin epitaxial praseodymia films on Si(111)
    (Basel : MDPI, 2015) Kuschel, Olga; Dieck, Florian; Wilkens, Henrik; Gevers, Sebastian; Rodewald, Jari; Otte, Christian; Zoellner, Marvin Hartwig; Niu, Gang; Schroeder, Thomas; Wollschläger, Joachim
    Praseodymia films have been exposed to oxygen plasma at room temperature after deposition on Si(111) via molecular beam epitaxy. Different parameters as film thickness, exposure time and flux during plasma treatment have been varied to study their influence on the oxygen plasma oxidation process. The surface near regions have been investigated by means of X-ray photoelectron spectroscopy showing that the plasma treatment transforms the stoichiometry of the films from Pr2O3 to PrO2. Closer inspection of the bulk properties of the films by means of synchrotron radiation based X-ray reflectometry and diffraction confirms this transformation if the films are thicker than some critical thickness of 6 nm. The layer distance of these films is extremely small verifying the completeness of the plasma oxidation process. Thinner films, however, cannot be transformed completely. For all films, less oxidized very thin interlayers are detected by these experimental techniques.
  • Item
    Efficacy of plasma-polymerized allylamine coating of zirconia after five years
    (Basel : MDPI, 2020) Rohr, Nadja; Fricke, Katja; Bergemann, Claudia; Nebe, J Barbara; Fischer, Jens
    Plasma-polymerized allylamine (PPAAm) coatings of titanium enhance the cell behavior of osteoblasts. The purpose of the present study was to evaluate a PPAAm nanolayer on zirconia after a storage period of 5 years. Zirconia specimens were directly coated with PPAAm (ZA0) or stored in aseptic packages at room temperature for 5 years (ZA5). Uncoated zirconia specimens (Zmt) and the micro-structured endosseous surface of a zirconia implant (Z14) served as controls. The elemental compositions of the PPAAm coatings were characterized and the viability, spreading and gene expression of human osteoblastic cells (MG-63) were assessed. The presence of amino groups in the PPAAm layer was significantly decreased after 5 years due to oxidation processes. Cell viability after 24 h was significantly higher on uncoated specimens (Zmt) than on all other surfaces. Cell spreading after 20 min was significantly higher for Zmt = ZA0 > ZA5 > Z14, while, after 24 h, spreading also varied significantly between Zmt > ZA0 > ZA5 > Z14. The expression of the mRNA differentiation markers collagen I and osteocalcin was upregulated on untreated surfaces Z14 and Zmt when compared to the PPAAm specimens. Due to the high biocompatibility of zirconia itself, a PPAAm coating may not additionally improve cell behavior.
  • Item
    Elucidating the chemistry behind the reduction of graphene oxide using a green approach with polydopamine
    (Basel : MDPI, 2019) Silva, Cláudia; Simon, Frank; Friedel, Peter; Pötschke, Petra; Zimmerer, Cordelia
    A new approach using X-ray photoelectron spectroscopy (XPS) was employed to give insight into the reduction of graphene oxide (GO) using a green approach with polydopamine (PDA). In this approach, the number of carbon atoms bonded to OH and to nitrogen in PDA is considered and compared to the total intensity of the signal resulting from OH groups in polydopamine-reduced graphene oxide (PDA-GO) to show the reduction. For this purpose, GO and PDA-GO with different times of reduction were prepared and characterized by Raman Spectroscopy and XPS. The PDA layer was removed to prepare reduced graphene oxide (RGO) and the effect of all chemical treatments on the thermal and electrical properties of the materials was studied. The results show that the complete reduction of the OH groups in GO occurred after 180 min of reaction. It was also concluded that Raman spectroscopy is not well suited to determine if the reduction and restoration of the sp2 structure occurred. Moreover, a significant change in the thermal stability was not observed with the chemical treatments. Finally, the electrical powder conductivity decreased after reduction with PDA, increasing again after its removal. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    X-ray Ptychographic Imaging and Spectroscopic Studies of Plasma-Treated Plastic Films
    (Basel : MDPI, 2022) Ravandeh, Mehdi; Mehrjoo, Masoud; Kharitonov, Konstantin; Schäfer, Jan; Quade, Antje; Honnorat, Bruno; Ruiz-Lopez, Mabel; Keitel, Barbara; Kreis, Svea; Pan, Rui; Gang, Seung-gi; Wende, Kristian; Plönjes, Elke
    Polyethylene terephthalate (PET) is a thermoplastic polyester with numerous applications in industry. However, it requires surface modification on an industrial scale for printing and coating processes and plasma treatment is one of the most commonly used techniques to increase the hydrophilicity of the PET films. Systematic improvement of the surface modification by adaption of the plasma process can be aided by a comprehensive understanding of the surface morphology and chemistry. However, imaging large surface areas (tens of microns) with a resolution that allows understanding the surface quality and modification is challenging. As a proof-of-principle, plasma-treated PET films were used to demonstrate the capabilities of X-ray ptychography, currently under development at the soft X-ray free-electron laser FLASH at DESY, for imaging macroscopic samples. In combination with scanning electron microscopy (SEM), this new technique was used to study the effects of different plasma treatment processes on PET plastic films. The studies on the surface morphology were complemented by investigations of the surface chemistry using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). While both imaging techniques consistently showed an increase in roughness and change in morphology of the PET films after plasma treatment, X-ray ptychography can provide additional information on the three-dimensional morphology of the surface. At the same time, the chemical analysis shows an increase in the oxygen content and polarity of the surface without significant damage to the polymer, which is important for printing and coating processes.
  • Item
    XPS investigations of MOCVD tin oxide thin layers on Si nanowires array
    (Amsterdam : Elsevier, 2018) Turishchev, S.Yu.; Chuvenkova, Olga; Parinova, V.E.; Koyuda, D.A.; Chumakov, Ratibor G.; Presselt, Martin; Schleusener, Alexander; Sivakov, Vladimir
    Tin oxide thin layers were grown by metal-organic chemical vapor deposition technique on the top-down nanostructured silicon nanowires array obtained by metal-assisted wet-chemical technique from single crystalline silicon wafers. The composition of the formed layers were studied by high-resolution X-ray photoelectron spectroscopy of tin (Sn 3d) and oxygen (O 1 s) atoms core levels. The ion beam etching was applied to study the layers depth composition profiles. The composition studies of grown tin oxide layers is shown that the surface of layers contains tin dioxide, but the deeper part contains intermediate tin dioxide and metallic tin phases.
  • Item
    On the possibility of PhotoEmission Electron Microscopy for E. coli advanced studies
    (Amsterdam [u.a.] : Elsevier, 2020) Turishchev, S.Yu.; Marchenko, D.; Sivakov, V.; Belikov, E.A.; Chuvenkova, O.A.; Parinova, E.V.; Koyuda, D.A.; Chumakov, R.G.; Lebedev, A.M.; Kulikova, T.V.; Berezhnoy, A.A.; Valiakhmedova, I.V.; Praslova, N.V.; Preobrazhenskaya, E.V.; Antipov, S.S.
    The novel approach was proposed for detailed high-resolution studies of morphology and physico-chemical properties concomitantly at one measurement spot of E. coli bacterial cells culture immobilized onto silicon wafer surface in UHV conditions applying PhotoEmission Electron Microscopy under Hg lamp irradiation. For the E. coli characterization scanning electron microscopy (electron beam) and X-ray photoelectron spectroscopy (X-ray tube radiation) were applied prior to PhotoEmission Electron Microscopy measurements. In spite of irradiation doses collected for the cell arrays we were successful in detection of high-resolution images even of single E. coli bacterium by PhotoEmission Electron Microscopy technique followed by detailed high-resolution morphology studies by scanning electron microscopy. These results revealed widespread stability of the E. coli membranes shape after the significant number of applied characterization techniques. © 2019 The Authors
  • Item
    Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy
    (Chichester [u.a.] : Wiley, 2021) Müller, Anja; Krahl, Thoralf; Radnik, Jörg; Wagner, Andreas; Kreyenschulte, Carsten; Werner, Wolfgang S.M.; Ritter, Benjamin; Kemnitz, Erhard; Unger, Wolfgang E.S.
    The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology.
  • Item
    Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices
    (Basel : MDPI, 2020) Yakimchuk, Dzmitry V.; Bundyukova, Victoria D.; Ustarroz, Jon; Terryn, Herman; Baert, Kitty; Kozlovskiy, Artem L.; Zdorovets, Maxim V.; Khubezhov, Soslan A.; Trukhanov, Alex V.; Trukhanov, Sergei V.; Panina, Larissa V.; Arzumanyan, Grigory M.; Mamatkulov, Kahramon Z.; Tishkevich, Daria I.; Kaniukov, Egor Y.; Sivakov, Vladimir
    The modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth. The easiest ways to control the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed study of achieved gold nanostructures' morphology, microstructure, and surface composition at different formation stages is carried out to understand the peculiarities of realized nanostructures. Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume, which can be used for the controlled formation of nanostructures with a predetermined geometry and composition, has been proposed. The results observed in the present study can be useful for the design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of ultra-low concentration of different chemical or biological analytes, where the size of the localized gold nanostructures is comparable with the spot area of the focused laser beam.