Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites

2016, Ameli, A., Arjmand, M., Pötschke, Petra, Krause, Beate, Sundararaj, U.

This study reports on nitrogen-doped carbon nanotube (N-CNT)/polymer nanocomposites exhibiting relatively high and frequency independent real permittivity (ϵ′) together with low dielectric loss (tan δ). N-CNTs were synthesized by chemical vapor deposition, and their nanocomposites were prepared by melt-mixing with polyvinylidene fluoride (PVDF). In the synthesis of N-CNTs, three catalysts of Co, Fe and Ni, and three temperatures of 650, 750 and 950 °C were employed. The morphology, aspect ratio, synthesis yield, remaining residue, nitrogen content, nitrogen bonding type, and powder conductivity of N-CNTs, and the morphology, polar crystalline phase, and broadband dielectric properties of N-CNT/PVDF nanocomposites were investigated. The results revealed that by proper selection of synthesis catalyst (Fe) and temperature (650 °C and 950 °C), nitrogen doping generated polarizable nanotubes via providing local polarization sites, and resulted in nanocomposites with favorable dielectric properties for charge storage applications at N-CNT loadings as low as 1.0 wt%. As a result, 3.5 wt% (N-CNT)Fe/950°C/PVDF nanocomposites exhibited an insulative behavior with ϵ' = 23.12 and tan δ = 0.05 at 1 kHz, a combination superior to that of PVDF, i.e., ϵ' = 8.4 and tan δ = 0.03 and to those of percolative nanocomposites, e.g., ϵ' = 71.20 and tan δ = 63.20 for 3.5 wt% (N-CNT)Fe/750°C/PVDF. Also, the relationships between the dielectric properties, N-CNT structure, and nanocomposite morphology were identified.

Loading...
Thumbnail Image
Item

Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries

2016, Madian, M., Klose, M., Jaumann, T., Gebert, A., Oswald, S., Ismail, N., Eychmüller, A., Eckerta, J., Giebeler, L.

Developing novel electrode materials is a substantial issue to improve the performance of lithium ion batteries. In the present study, single phase Ti–Sn alloys with different Sn contents of 1 to 10 at% were used to fabricate Ti–Sn–O nanotubes via a straight-forward anodic oxidation step in an ethylene glycolbased solution containing NH4F. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. Our results reveal the successful formation of mixed TiO2/SnO2 nanotubes in the applied voltage range of 10–40 V. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage which turns Ti–Sn–O nanotubes into highly attractive materials for various applications. As an example, the Ti–Sn–O nanotubes offer promising properties as anode materials in lithium ion batteries. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at a current density of 504 mA cm2. The results demonstrate that TiO2/SnO2 nanotubes prepared at 40 V on a TiSn1 alloy substrate display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. This electrode was tested at current densities of 50, 100, 252, 504 and 1008 mA cm2 exhibiting average capacities of 780, 660, 490, and 405 mA cm2 (i.e. 410, 345, 305 and 212 mA h g1), respectively. The remarkably improved electrochemical performance is attributed to enhanced lithium ion diffusion which originates from the presence of SnO2 nanotubes and the high surface area of the mixed oxide tubes. The TiO2/SnO2 electrodes retain their original tubular structure after electrochemical cycling with only slight changes in their morphology.

Loading...
Thumbnail Image
Item

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: Synthesis, structural characterization and magnetic properties

2018, Ghunaim, R., Scholz, M., Damm, C., Rellinghaus, B., Klingeler, R., Büchner, B., Mertig, M., Hampel, S.

In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

Loading...
Thumbnail Image
Item

Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites

2016, Arjmand, Mohammad, Chizari, Kambiz, Krause, Beate, Pötschke, Petra, Sundararaj, Uttandaraman

Different catalysts including Co, Fe, and Ni were used to synthesize nitrogen-doped carbon nanotubes (N-CNTs) by chemical vapor deposition technique. Synthesized N-CNTs were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a small scale mixer at different concentrations ranging from 0.3 to 3.5 wt%, and then compression molded. The characterization techniques revealed significant differences in the synthesis yield and the morphological and electrical properties of both N-CNTs and nanocomposites depending on the catalyst type. Whereas Co and Fe resulted in yields comparable to industrial multiwalled CNTs, Ni was much less effective. The N-CNT aspect ratio was the highest for Co catalyst, followed by Ni and Fe, whereas nitrogen content was the highest for Ni. Raman spectroscopy revealed lowest defect number and highest N-CNT crystallinity for Fe catalyst. Characterization of N-CNT/PVDF nanocomposites showed better dispersion for N-CNTs based on Co and Fe as compared to Ni, and the following order of electrical conductivity and electromagnetic interference shielding (from high to low): Co > Fe > Ni. The superior electrical properties of (N-CNT)Co nanocomposites were ascribed to a combination of high synthesis yield, high aspect ratio, low nitrogen content and high crystallinity of N-CNTs combined with a good state of N-CNT dispersion.

Loading...
Thumbnail Image
Item

Establishment, morphology and properties of carbon nanotube networks in polymer melts

2012, Alig, I., Pötschke, P., Lellinger, D., Skipa, T., Pegel, S., Kasaliwal, G.R., Villmow, T.

As for nanofillers in general, the properties of carbon nanotube (CNT) -polymer composites depend strongly on the filler arrangement and the structure of the filler network. This article reviews our actual understanding of the relation between processing conditions, state of CNT dispersion and structure of the filler network on the one hand, and the resulting electrical, melt rheological and mechanical properties, on the other hand. The as-produced rather compact agglomerates of CNTs (initial agglomerates, >1 μm), whose structure can vary for different tube manufacturers, synthesis and/or purification conditions, have first to be well dispersed in the polymer matrix during the mixing step, before they can be arranged to a filler network with defined physical properties by forming secondary agglomerates. Influencing factors on the melt dispersion of initial agglomerates of multi-walled CNTs into individualized tubes are discussed in context of dispersion mechanisms, namely the melt infiltration into initial agglomerates, agglomerate rupture and nanotube erosion from agglomerate surfaces. The hierarchical morphology of filler arrangement resulting from secondary agglomeration processes has been found to be due to a competition of build-up and destruction for the actual melt temperature and the given external flow field forces. Related experimental results from in-line and laboratory experiments and a model approach for description of shear-induced properties are presented.

Loading...
Thumbnail Image
Item

Photocatalytic degradation and toxicity evaluation of diclofenac by nanotubular titanium dioxide–PES membrane in a static and continuous setup

2015, Fischer, K., Kühnert, M., Gläser, R., Schulze, A.

Diclofenac is a commonly used anti-inflammatory drug, which has been found in surface waters. Advanced oxidation processes (AOPs) seem to be the most suitable technique to prevent the entry of diclofenac and other pollutants into surface waters. TiO2 is especially reliable in mineralizing many organic molecules. The combination of TiO2 nanotubes with a polymer microfiltration membrane (polyethersulfone, PES) showed high photocatalytic activity by degrading diclofenac combined with an excellent membrane performance and long-term stability. By continuously degrading pollutants from water via a cross-flow setup, the molecules to be degraded are transported right to the membrane surface so that the overall reaction rate is increased. The toxicity of diclofenac was reduced by photocatalysis and photolysis; however, photocatalysis had greater impact. Moreover, the complete degradation of pollutants is very important to avoid highly toxic intermediate products.

Loading...
Thumbnail Image
Item

Halloysite Nanotubes Noncovalently Functionalised with SDS Anionic Surfactant and PS-b-P4VP Block Copolymer for Their Effective Dispersion in Polystyrene as UV-Blocking Nanocomposite Films

2017, Tzounis, Lazaros, Herlekar, Shreya, Tzounis, Antonios, Charisiou, Nikolaos D., Goula, Maria, Stamm, Manfred

Asimple and versatilemethod is reported for the noncovalent functionalisation of natural and "green" halloysite nanotubes (HNTs) allowing their effective dispersion in a polystyrene (PS) thermoplastic matrix via solvent mixing. Initially, HNTs (pristine HNTs) were modified with physically adsorbed surfactant molecules of sodium dodecyl sulphate (SDS) and PS-b-P4VP [P4VP: poly(4-vinylpyridine)] block copolymer (BCP). Hereafter, SDS and BCP modified HNTs will be indicated as SDS-m-HNT and BCP-m-HNT.Nanocomposite films with 1, 2, and 5 wt.%HNTloadingswere prepared, abbreviated as PS-SDS-m-HNT1, PS-SDS-m-HNT2, and PS-SDS-m-HNT5 and PS-BCP-m-HNT1, PS-BCP-m-HNT2, and PS-BCP-m-HNT5 (where 1, 2, and 5 correspond to the wt.% of HNTs). All nanocomposites depicted improved thermal degradation compared to the neat PS as revealed by thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) confirmed the good dispersion state of HNTs and the importance of modification by SDS and BCP. X-ray diffraction (XRD) studies showed the characteristic interlayer spacing between the two silicate layers of pristine and modified HNTs. The PS/HNT nanocomposite films exhibited excellent ultraviolent-visible (UV-vis) absorbance properties and their potential application as UV-filters could be envisaged.

Loading...
Thumbnail Image
Item

Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials

2018, Gnanaseelan, Minoj, Chen, Yian, Luo, Jinji, Krause, Beate, Pionteck, Jürgen, Pötschke, Petra, Qu, Haisong

Thermoelectric materials based on cellulose/carbon nanotube (CNT) nanocomposites have been developed by a facile approach and the effects of amount (2–10 wt%) and types of CNTs (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)) on the morphology (films and aerogels) and the thermoelectric properties of the nanocomposites have been investigated. Composite films based on SWCNTs showed significantly higher electrical conductivity (5 S/cm at 10 wt%) and Seebeck coefficient (47.2 μV/K at 10 wt%) compared to those based on MWCNTs (0.9 S/cm and 11 μV/K, respectively). Lyophilization, leading to development of aerogels with sub-micron sized pores, decreased the electrical conductivity for both types by one order of magnitude, but did not affect the Seebeck coefficient of MWCNT based nanocomposites. For SWCNT containing aerogels, higher Seebeck coefficients than for films were measured at 3 and 4 wt% but significantly lower values at higher loadings. CNT addition increased the thermal conductivity from 0.06 to 0.12 W/(m∙K) in the films, whereas the lyophilization significantly reduced it towards values between 0.01 and 0.09 W/(m∙K) for the aerogels. The maximum Seebeck coefficient, power factor, and ZT observed in this study are 49 μV/K for aerogels with 3 wt% SWCNTs, 1.1 μW/(m∙K2) for composite films with 10 wt% SWCNTs, and 7.4 × 10−4 for films with 8 wt% SWCNTs, respectively.

Loading...
Thumbnail Image
Item

Direct chemical vapor deposition synthesis of large area single-layer brominated graphene

2019, Hasan, M., Meiou, W., Yulian, L., Ullah, S., Ta, H.Q., Zhao, L., Mendes, R.G., Malik, Z.P., Ahmad, N.M., Liu, Z., Rümmeli, M.H.

Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp2 carbon with halogens, such as bromine, was demonstrated with carbon nanotubes. However, the direct synthesis of brominated graphene has thus far remained elusive. In this study we show how large area brominated graphene with C-Br bonds can be achieved directly (i.e. a single step) using hydrogen rich low pressure chemical vapor deposition. The direct synthesis of brominated graphene could lead to practical developments. © The Royal Society of Chemistry.