Search Results

Now showing 1 - 2 of 2
  • Item
    Mixed Ionic-Electronic Conductivity, Redox Behavior and Thermochemical Expansion of Mn-Substituted 5YSZ as an Interlayer Material for Reversible Solid Oxide Cells
    (Basel : MDPI, 2021) Natoli, Alejandro; Arias-Serrano, Blanca I.; Rodríguez-Castellón, Enrique; Żurawska, Agnieszka; Frade, Jorge R.; Yaremchenko, Aleksey. A.
    Manganese-substituted 5 mol.% yttria-stabilized zirconia (5YSZ) was explored as a prospective material for protective interlayers between electrolyte and oxygen electrodes in reversible solid oxide fuel/electrolysis cells. [(ZrO2)0.95(Y2O3)0.05]1−x[MnOy]x (x = 0.05, 0.10 and 0.15) ceramics with cubic fluorite structure were sintered in air at 1600 °C. The characterization included X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetry and dilatometry in controlled atmospheres, electrical conductivity measurements, and determination of oxygen-ion transference numbers by the electromotive force (EMF) technique. Mn-substituted 5YSZ solid solutions exhibit variable oxygen nonstoichiometry with manganese cations in a mixed 2+/3+ oxidation state under oxidizing conditions. Substitution by manganese gradually increases the extent of oxygen content variation on thermal/redox cycling, chemical contribution to thermal expansion and dimensional changes on reduction. It also deteriorates oxygen-ionic conductivity and improves p-type electronic conductivity under oxidizing conditions, leading to a gradual transformation from predominantly ionic to prevailing electronic transport with increasing x. Mn2+/3+→Mn2+ transformation under reducing atmospheres is accompanied by the suppression of electronic transport and an increase in ionic conductivity. All Mn-substituted 5YSZ ceramics are solid electrolytes under reducing conditions. Prolonged treatments in reducing atmospheres, however, promote microstructural changes at the surface of bulk ceramics and Mn exsolution. Mn-substituted 5YSZ with 0.05 ≤ x < 0.10 is considered the most suitable for the interlayer application, due to the best combination of relevant factors, including oxygen content variations, levels of ionic/electronic conductivity and thermochemical expansion.
  • Item
    Plasma polymerized allylamine-the unique cell-attractive nanolayer for dental implant materials
    (Basel : MDPI, 2019) Nebe, J. Barbara; Rebl, Henrike; Schlosser, Michael; Staehlke, Susanne; Gruening, Martina; Weltmann, Klaus-Dieter; Walschus, Uwe; Finke, Birgit
    Biomaterials should be bioactive in stimulating the surrounding tissue to accelerate the ingrowth of permanent implants. Chemical and topographical features of the biomaterial surface affect cell physiology at the interface. A frequently asked question is whether the chemistry or the topography dominates the cell-material interaction. Recently, we demonstrated that a plasma-chemical modification using allylamine as a precursor was able to boost not only cell attachment and cell migration, but also intracellular signaling in vital cells. This microwave plasma process generated a homogenous nanolayer with randomly distributed, positively charged amino groups. In contrast, the surface of the human osteoblast is negatively charged at −15 mV due to its hyaluronan coat. As a consequence, we assumed that positive charges at the material surface—provoking electrostatic interaction forces—are attractive for the first cell encounter. This plasma-chemical nanocoating can be used for several biomaterials in orthopedic and dental implantology like titanium, titanium alloys, calcium phosphate scaffolds, and polylactide fiber meshes produced by electrospinning. In this regard, we wanted to ascertain whether plasma polymerized allylamine (PPAAm) is also suitable for increasing the attractiveness of a ceramic surface for dental implants using Yttria-stabilized tetragonal zirconia.