Search Results

Now showing 1 - 6 of 6
  • Item
    Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain
    (Göttingen : Copernicus, 2014) Chen, J.; Zhao, C.S.; Ma, N.; Yan, P.
    The relative humidity (RH) dependence of aerosol light scattering is an essential parameter for accurate estimation of the direct radiative forcing induced by aerosol particles. Because of insufficient information on aerosol hygroscopicity in climate models, a more detailed parameterization of hygroscopic growth factors and resulting optical properties with respect to location, time, sources, aerosol chemistry and meteorology are urgently required. In this paper, a retrieval method to calculate the aerosol hygroscopicity parameter, κ, is proposed based on the in situ measured aerosol light scattering enhancement factor, namely f(RH), and particle number size distribution (PNSD) obtained from the HaChi (Haze in China) campaign. Measurements show that f(RH) increases sharply with increasing RH, and that the time variance of f(RH) is much greater at higher RH. A sensitivity analysis reveals that the f(RH) is more sensitive to the aerosol hygroscopicity than PNSD. f(RH) for polluted cases is distinctly higher than that for clean periods at a specific RH. The derived equivalent κ, combined with the PNSD measurements, is applied in the prediction of the cloud condensation nuclei (CCN) number concentration. The predicted CCN number concentration with the derived equivalent κ agrees well with the measured ones, especially at high supersaturations. The proposed calculation algorithm of κ with the f(RH) measurements is demonstrated to be reasonable and can be widely applied.
  • Item
    Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols-Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols
    (Göttingen : Copernicus, 2010) Poulain, L.; Wu, Z.; Petters, M.D.; Wex, H.; Hallbauer, E.; Wehner, B.; Massling, A.; Kreidenweis, S.M.; Stratmann, F.
    The influence of varying levels of water mixing ratio,r during the formation of secondary organic aerosol (SOA) from the ozonolysis of α-pinene on the SOA hygroscopicity and volatility was investigated. The reaction proceeded and aerosols were generated in a mixing chamber and the hygroscopic characteristics of the SOA were determined with the Leipzig Aerosol Cloud Interaction Simulator (LACIS) and a Cloud Condensation Nuclei counter (CCNc). In parallel, a High-Resolution Time-of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) located downstream of a thermodenuder (TD) sampling from the mixing chamber, to collect mass spectra of particles from the volatile and less-volatile fractions of the SOA. Results showed that both hygroscopic growth and the volatile fraction of the SOA increased with increases in r inside the mixing chamber during SOA generation. An effective density of 1.40 g cm-3 was observed for the generated SOA when the reaction proceeded with <1 g kg-1. Changes in the concentrations of the fragment CO2+ and the sum of CxH+y(short name CHO) and CxH+y (short name CH) fragments as measured by the HR-ToF-AMS were used to estimate changes in the oxidation level of the SOA with reaction conditions, using the ratios CO2 + to CH and CHO to CH. Under humid conditions, both ratios increased, corresponding to the presence of more oxygenated functional groups (i.e., multifunctional carboxylic acids). This result is consistent with the α-pinene ozonolysis mechanisms which suggest that water interacts with the stabilized Criegee intermediate. The volatility and the hygroscopicity results show that SOA generation via ozonolysis of α-pinene in the presence of water vapour (r <16.9 g kg-1) leads to the formation of more highly oxygenated compounds that are more hygroscopic and more volatile than compounds formed under dry conditions. © 2010 Author(s).
  • Item
    The HadGEM2-ES implementation of CMIP5 centennial simulations
    (Göttingen : Copernicus, 2011) Jones, C.D.; Hughes, J.K.; Bellouin, N.; Hardiman, S.C.; Jones, G.S.; Knight, J.; Liddicoat, S.; O'Connor, F.M.; Andres, R.J.; Bell, C.; Boo, K.-O.; Bozzo, A.; Butchart, N.; Cadule, P.; Corbin, K.D.; Doutriaux-Boucher, M.; Friedlingstein, P.; Gornall, J.; Gray, L.; Halloran, P.R.; Hurtt, G.; Ingram, W.J.; Lamarque, J.-F.; Law, R.M.; Meinshausen, M.; Osprey, S.; Palin, E.J.; Parsons, Chini, L.; Raddatz, T.; Sanderson, M.G.; Sellar, A.A.; Schurer, A.; Valdes, P.; Wood, N.; Woodward, S.; Yoshioka, M.; Zerroukat, M.
    The scientific understanding of the Earth's climate system, including thecentral question of how the climate system is likely to respond tohuman-induced perturbations, is comprehensively captured in GCMs and EarthSystem Models (ESM). Diagnosing the simulated climate response, andcomparing responses across different models, is crucially dependent ontransparent assumptions of how the GCM/ESM has been driven - especiallybecause the implementation can involve subjective decisions and may differbetween modelling groups performing the same experiment. This paper outlinesthe climate forcings and setup of the Met Office Hadley Centre ESM, HadGEM2-ES for the CMIP5 set of centennial experiments. We document theprescribed greenhouse gas concentrations, aerosol precursors, stratosphericand tropospheric ozone assumptions, as well as implementation of land-usechange and natural forcings for the HadGEM2-ES historical and futureexperiments following the Representative Concentration Pathways. Inaddition, we provide details of how HadGEM2-ES ensemble members wereinitialised from the control run and how the palaeoclimate and AMIPexperiments, as well as the "emission-driven" RCP experiments wereperformed.
  • Item
    Charging of mesospheric aerosol particles: The role of photodetachment and photoionization from meteoric smoke and ice particles
    (Göttingen : Copernicus, 2009) Rapp, M.
    Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs) and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (≫1000 cm-3) such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs. © 2009 Author(s).
  • Item
    Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign
    (Göttingen : Copernicus, 2014) Hammer, E.; Gysel, M.; Roberts, G.C.; Elias, T.; Hofer, J.; Hoyle, C.R.; Bukowiecki, N.; Dupont, J.-C.; Burnet, F.; Baltensperger, U.; Weingartner, E.
    Fog-induced visibility reduction is responsible for a variety of hazards in the transport sector. Therefore there is a large demand for an improved understanding of fog formation and thus improved forecasts. Improved fog forecasts require a better understanding of the numerous complex mechanisms during the fog life cycle. During winter 2012/13 a field campaign called ParisFog aiming at fog research took place at SIRTA (Instrumented Site for Atmospheric Remote Sensing Research). SIRTA is located about 20 km southwest of the Paris city center, France, in a semi-urban environment. In situ activation properties of the prevailing fog were investigated by measuring (1) total and interstitial (non-activated) dry particle number size distributions behind two different inlet systems; (2) interstitial hydrated aerosol and fog droplet size distributions at ambient conditions; and (3) cloud condensation nuclei (CCN) number concentration at different supersaturations (SS) with a CCN counter. The aerosol particles were characterized regarding their hygroscopic properties, fog droplet activation behavior and contribution to light scattering for 17 developed fog events. Low particle hygroscopicity with an overall median of the hygroscopicity parameter, κ, of 0.14 was found, likely caused by substantial influence from local traffic and wood burning emissions. Measurements of the aerosol size distribution at ambient RH revealed that the critical wet diameter, above which the hydrated aerosols activate to fog droplets, is rather large (with a median value of 2.6μm) and is highly variable (ranging from 1 to 5μm) between the different fog events. Thus, the number of activated fog droplets was very small and the non-activated hydrated particles were found to contribute significantly to the observed light scattering and thus to the reduction in visibility. Combining all experimental data, the effective peak supersaturation, SSpeak, a measure of the peak supersaturation during the fog formation, was determined. The median SSpeak value was estimated to be in the range from 0.031 to 0.046% (upper and lower limit estimations), which is in good agreement with previous experimental and modeling studies of fog.
  • Item
    Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX
    (Göttingen : Copernicus, 2013) Groß, S.; Esselborn, M.; Abicht, F.; Wirth, M.; Fix, A.; Minikin, A.
    Airborne high spectral resolution lidar observations over Europe during the EUCAARI-LONGREX field experiment in May 2008 are analysed with respect to the optical properties of continental pollution aerosol. Continental pollution aerosol is characterized by its depolarisation and lidar ratio. Over all, the measurements of the lidar ratio and the particle linear depolarization ratio of pollution aerosols provide a narrow range of values. Therefore, this data set allows for a distinct characterization of the aerosol type "pollution aerosol" and thus is valuable both to distinguish continental pollution aerosol from other aerosol types and to determine mixtures with other types of aerosols.