Search Results

Now showing 1 - 3 of 3
  • Item
    A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: Improvement of particulate nitrate prediction
    (Katlenburg-Lindau : EGU, 2018) Chen, Ying; Wolke, Ralf; Ran, Liang; Birmili, Wolfram; Spindler, Gerald; Schröder, Wolfram; Su, Hang; Cheng, Yafang; Tegen, Ina; Wiedensohler, Alfred
    The heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol leads to HNO3 formation and acts as a major sink of NOx in the atmosphere during night-time. The reaction constant of this heterogeneous hydrolysis is determined by temperature (T), relative humidity (RH), aerosol particle composition, and the surface area concentration (S). However, these parameters were not comprehensively considered in the parameterization of the heterogeneous hydrolysis of N2O5 in previous mass-based 3-D aerosol modelling studies. In this investigation, we propose a sophisticated parameterization (NewN2O5) of N2O5 heterogeneous hydrolysis with respect to T, RH, aerosol particle compositions, and S based on laboratory experiments. We evaluated closure between NewN2O5 and a state-of-the-art parameterization based on a sectional aerosol treatment. The comparison showed a good linear relationship (R Combining double low line 0.91) between these two parameterizations. NewN2O5 was incorporated into a 3-D fully online coupled model, COSMO-Muscat, with the mass-based aerosol treatment. As a case study, we used the data from the HOPE Melpitz campaign (10-25 September 2013) to validate model performance. Here, we investigated the improvement of nitrate prediction over western and central Europe. The modelled particulate nitrate mass concentrations ([NO3-]) were validated by filter measurements over Germany (Neuglobsow, Schmücke, Zingst, and Melpitz). The modelled [NO3-] was significantly overestimated for this period by a factor of 5-19, with the corrected NH3 emissions (reduced by 50 %) and the original parameterization of N2O5 heterogeneous hydrolysis. The NewN2O5 significantly reduces the overestimation of [NO3-] by ∼ 35 %. Particularly, the overestimation factor was reduced to approximately 1.4 in our case study (12, 17-18 and 25 September 2013) when [NO3-] was dominated by local chemical formations. In our case, the suppression of organic coating was negligible over western and central Europe, with an influence on [NO3-] of less than 2 % on average and 20 % at the most significant moment. To obtain a significant impact of the organic coating effect, N2O5, SOA, and NH3 need to be present when RH is high and T is low. However, those conditions were rarely fulfilled simultaneously over western and central Europe. Hence, the organic coating effect on the reaction probability of N2O5 may not be as significant as expected over western and central Europe.
  • Item
    Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
    (Katlenburg-Lindau : EGU, 2018) Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Holanda, Bruna Amorim; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut
    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15ĝ€km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation.

    Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90ĝ€nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72ĝ€h. We also found elevated concentrations of larger (> 90ĝ€nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN.

    Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
  • Item
    Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements
    (Katlenburg-Lindau : EGU, 2018) Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas
    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe. The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties. In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for different altitudes were determined using the airborne in situ measurements and were compared with the lidar measurements. The investigation of the optical properties shows that on average the airborne-based particle light backscatter coefficient is 50.1 % smaller for 1064 nm, 27.4 % smaller for 532 nm, and 29.5 % smaller for 355 nm than the measurements of the lidar system. These results are quite promising, since in situ measurement-based Mie calculations of the particle light backscattering are scarce and the modeling is quite challenging. In contrast, for the particle light extinction coefficient we found a good agreement. The airborne-based particle light extinction coefficient was just 8.2 % larger for 532 nm and 3 % smaller for 355 nm, for an assumed LR of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar measurements. For the first time, the lidar ratio of 30 sr for 1064 nm was determined on the basis of in situ measurements and the LR of 55 sr for 355 and 532 nm wavelength was reproduced for European continental aerosol on the basis of this comparison. Lidar observations and the in situ based aerosol optical properties agree within the uncertainties. However, our observations indicate that a determination of the PNSD for a large size range is important for a reliable modeling of aerosol particle backscattering.