Search Results

Now showing 1 - 2 of 2
  • Item
    Long-term wintertime trend of zonally asymmetric ozone in boreal extratropics during 1979-2016
    (Basel : MDPI AG, 2018) Schneidereit, A.; Peters, D.H.W.
    Strong zonally asymmetric ozone (ZAO) changes are observed in the boreal extratropics for winter. During the TOMS (Total Ozone Mapping Spectrometer) period (1979-1992) the decrease of zonally asymmetric total ozone (ZATO) was twice as large as the observed zonal mean total ozone trend over Europe in January mainly caused by ultra-long wave transport. Recent studies have demonstrated that the ozone evolution reveals three different quasi-bidecadal trend stages: (i) Decline, (ii) leveling, and (ii) healing. This study focuses on the ZAO structure in boreal extratropics and on ozone transport changes by ultra-long waves during winter months. ERA-Interim data together with a linearized transport model are used. During the healing stage ZATO increases significantly over the North Atlantic/European region for January. The ZATO increase (healing stage) and ZATO decrease (decline stage) are caused by different monthly mean ozone transport characteristics of ultra-long planetary waves over the North Atlantic/European region. Furthermore, the vertical advection (ageostrophic transport) of ozone versus its horizontal component dominates in the lower and middle stratosphere during the healing stage. It is hypothesized that these ageostrophic wind changes are mainly caused by a wave train directed northeastwards which seems to be directly linked to the Arctic warming. © 2018 by the authors.
  • Item
    Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere
    (Göttingen : Copernicus GmbH, 2011) Coumou, D.; Petoukhov, V.; Eliseev, A.V.
    We present a new set of statistical-dynamical equations (SDEs) which can accurately reproduce the three-dimensional atmospheric fields of synoptic scale kinetic energy and momentum flux. The set of equations is closed by finding proper parameterizations for the vertical macro-turbulent diffusion coefficient and ageostrophic terms. The equations have been implemented in a new SD atmosphere model, named Aeolus. We show that the synoptic scale kinetic energy and momentum fluxes generated by the model are in good agreement with empirical data, which were derived from bandpass-filtered ERA-40 data. In addition to present-day climate, the model is tested for substantially colder (last glacial maximum) and warmer (2×CO2) climates, and shown to be in agreement with general circulation model (GCM) results. With the derived equations, one can efficiently study the position and strength of storm tracks under different climate scenarios with calculation time a fraction of those of GCMs. This work prepares ground for the development of a new generation of fast Earth System Models of Intermediate Complexity which are able to perform multi-millennia simulations in a reasonable time frame while appropriately accounting for the climatic effect of storm tracks.