Search Results

Now showing 1 - 6 of 6
  • Item
    An electronic analog of synthetic genetic networks
    (San Francisco, CA : Public Library of Science (PLoS), 2011) Hellen, E.H.; Volkov, E.; Kurths, J.; Dana, S.K.
    An electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation. A good agreement between circuit measurements and numerical prediction is observed. The circuit allows for easy control of the kinetic parameters thereby aiding investigations of large varieties of potential dynamics.
  • Item
    A human development framework for CO 2 reductions
    (San Francisco, CA : Public Library of Science (PLoS), 2011) Costa, L.; Rybski, D.; Kropp, J.P.
    Although developing countries are called to participate in CO 2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO 2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO 2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300 Gt of cumulative CO 2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO 2 budgets limiting global warming to 2°C. These constraints and results are incorporated into a CO 2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2°C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO 2. These values are within the uncertainty range of emissions to limit global temperatures to 2°C.
  • Item
    Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size
    (San Francisco, CA : Public Library of Science (PLoS), 2012) Zhu, W.; Fang, J.-A.; Tang, Y.; Zhang, W.; Du, W.
    Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.
  • Item
    Order patterns networks (orpan) - A method to estimate time-evolving functional connectivity from multivariate time series
    (Lausanne : Frontiers Research Foundation, 2012) Schinkel, S.; Zamora-López, G.; Dimigen, O.; Sommer, W.; Kurths, J.
    Complex networks provide an excellent framework for studying the function of the human brain activity. Yet estimating functional networks from measured signals is not trivial, especially if the data is non-stationary and noisy as it is often the case with physiological recordings. In this article we propose a method that uses the local rank structure of the data to define functional links in terms of identical rank structures. The method yields temporal sequences of networks which permits to trace the evolution of the functional connectivity during the time course of the observation. We demonstrate the potentials of this approach with model data as well as with experimental data from an electrophysiological study on language processing.
  • Item
    Modification of Newton's law of gravity at very large distances
    (Amsterdam : Elsevier, 2002) Kirillov, A.A.; Turaev, D.
    We discuss a Modified Field Theory (MOFT) in which the number of fields can vary. It is shown that when the number of fields is conserved MOFT reduces to the standard field theory but interaction constants undergo an additional renormalization and acquire a dependence on spatial scales. In particular, the renormalization of the gravitational constant leads to the deviation of the law of gravity from the Newton's law in some range of scales rmin < r < rmax, in which the gravitational potential shows essentially logarithmic ∼ ln r (instead of 1/r) behavior. In this range, the renormalized value of the gravitational constant G increases and at scales r > rmax acquires a new constant value G′ ∼ Grmax/rmin. From the dynamical standpoint this looks as if every point source is surrounded with a halo of dark matter. It is also shown that if the maximal scale rmax is absent, the homogeneity of the dark matter in the Universe is consistent with a fractal distribution of baryons in space, in which the luminous matter is located on thin two-dimensional surfaces separated by empty regions of ever growing size.
  • Item
    Wireless magnetic-based closed-loop control of self-propelled microjets
    (San Francisco, CA : Public Library of Science, 2014) Khalil, I.S.M.; Magdanz, V.; Sanchez, S.; Schmidt, O.G.; Misra, S.
    In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.3x10-10 A.m2 at magnetic field and linear velocity of 2 mT and 100 μm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 μm/s, and within an average region-of-convergence of 365 μm.