Search Results

Now showing 1 - 3 of 3
  • Item
    Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles
    (Cambridge : RSC, 2013) Zhao, G.; Wang, H.; Sanchez, S.; Schmidt, O.G.; Pumera, M.
    In this work, we will show that ferromagnetic microjets can pick-up paramagnetic beads while not showing any interaction with diamagnetic silica microparticles for the active separation of microparticles in solution.
  • Item
    Time-resolved photoelectron spectroscopy of adenine and adenosine in aqueous solution
    (London [u.a.] : Royal Society of Chemistry, 2013) Buchner, F.; Ritze, H.-H.; Lahl, J.; Lübcke, A.
    Time-resolved photoelectron spectroscopy is applied to study the excited state dynamics of the DNA base adenine and its ribonucleoside adenosine in aqueous solution for pump and probe photon energies in the range between 4.66 eV and 5.21 eV. We follow the evolution of the prepared excited state on the potential energy surface and retrieve lifetimes of the S1 state under different excitation conditions.
  • Item
    Volume fraction determination of binary liquid mixtures by measurement of the equalization wavelength
    (Basel : MDPI, 2010) Martincek, I.; Pudis, D.; Kacik, D.; Schuster, K.
    A method for determination of the volume fraction in binary liquid mixtures by measurement of the equalization wavelength of intermodal interference of modes LP01 and LP11 in a liquid core optical fiber is presented in this paper. This method was studied using a liquid core optical fiber with fused silica cladding and a core made up of a binary silicon oil/chloroform liquid mixture with different volume fractions of chloroform. The interference technique used allows us to determine the chloroform volume fraction in the binary mixture with accuracy better than 0.1%. One of the most attractive advantages of presented method is very small volume of investigated mixture needed, as only a few hundred picoliters are necessary for reliable results. © 2010 by the authors.