Search Results

Now showing 1 - 6 of 6
  • Item
    Concepts and characteristics of the ‘COST Reference Microplasma Jet’
    (Bristol : IOP Publ., 2016) Golda, J.; Held, J.; Redeker, B.; Konkowski, M.; Beijer, P.; Sobota, A.; Kroesen, G.; Braithwaite, N.S.J.; Reuter, S.; Turner, M.M.; Gans, T.; O’Connell, D.; Schulz-von der Gathen, V.
    Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available.
  • Item
    The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications
    (Bristol : IOP Publ., 2018-5-16) Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter
    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.
  • Item
    Detection of HO2 in an atmospheric pressure plasma jet using optical feedback cavity-enhanced absorption spectroscopy
    (London : IOP, 2016) Gianella, Michele; Reuter, Stephan; Aguila, Ana Lawry; Ritchie, Grant A. D.; Helden, Jean-Pierre H. van
    Cold non-equilibrium atmospheric pressure plasma jets are increasingly applied in material processing and plasma medicine. However, their small dimensions make diagnosing the fluxes of generated species a challenge. Here we report on the detection of the hydroperoxyl radical,HO2, in the effluent of a plasma jet by the use of optical feedback cavity-enhanced absorption spectroscopy. The spectrometer has aminimumdetectable absorption coefficient amin of 2.25 ´10-10 cm−1 with a 100 second acquisition, equivalent to 5.5 ´ 1012 cm-3 ofHO2 (under ideal conditions). Concentrations in the range of (3.1–7.8) ×1013 cm−3 were inferred in the 4mmwide effluent of the plasma jet.
  • Item
    The spatial distribution of HO2 in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy
    (Bristol : IOP Publ., 2020) Klose, S.-J.; Manfred, K.M.; Norman, H.C.; Ritchie, G.A.D.; van Helden, J.H.
    Cold atmospheric pressure plasma jets make important contributions to a range of fields, such as materials processing and plasma medicine. In order to optimise the effect of those plasma sources, a detailed understanding of the chemical reaction networks is pivotal. However, the small diameter of plasma jets makes diagnostics challenging. A promising approach to obtain absolute number densities is the utilisation of cavity-enhanced absorption spectroscopy methods, by which line-of-sight averaged densities are determined. Here, we present first measurements on how the spatial distribution of HO2 in the effluent of a cold atmospheric pressure plasma jet can be obtained by cavity ring-down spectroscopy in an efficient way. Instead of recording fully wavelength resolved spectra, we will demonstrate that it is sufficient to measure the absorption coefficient at two wavelengths, corresponding to the laser being on and off the molecular resonance. By sampling the effluent from the 1.6 mm diameter nozzle in the radial direction at various axial positions, we determined that the distances over which the HO2 density was distributed were (3.9 ± 0.5) mm and (6.7 ± 0.1) mm at a distance of 2 mm and 10 mm below the nozzle of the plasma jet, respectively. We performed an Abel inversion in order to obtain the spatial distribution of HO2 that is presented along the symmetry axis of the effluent. Based on that localised density, which was (4.8 ± 0.6) ⋅ 1014 cm−3 at the maximum, we will discuss the importance of the plasma zone for the production of HO2.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.