Search Results

Now showing 1 - 10 of 17
Loading...
Thumbnail Image
Item

Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies

2016, Davies, Heather S., Singh, Prabha, Deckert-Gaudig, Tanja, Deckert, Volker, Rousseau, Karine, Ridley, Caroline E., Dowd, Sarah E., Doig, Andrew J., Pudney, Paul D. A., Thornton, David J., Blanch, Ewan W.

The major structural components of protective mucus hydrogels on mucosal surfaces are the secreted polymeric gel-forming mucins. The very high molecular weight and extensive O-glycosylation of gel-forming mucins, which are key to their viscoelastic properties, create problems when studying mucins using conventional biochemical/structural techniques. Thus, key structural information, such as the secondary structure of the various mucin subdomains, and glycosylation patterns along individual molecules, remains to be elucidated. Here, we utilized Raman spectroscopy, Raman optical activity (ROA), circular dichroism (CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that the protein backbone of MUC5B is dominated by unordered conformation, which was found to originate from the heavily glycosylated central mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D′-D3 domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B) and the Cys-domain (within the central mucin domain of MUC5B) were found to be dominated by the β-sheet. Using these findings, we employed TERS, which combines the chemical specificity of Raman spectroscopy with the spatial resolution of atomic force microscopy to study the secondary structure along 90 nm of an individual MUC5B molecule. Interestingly, the molecule was found to contain a large amount of α-helix/unordered structures and many signatures of glycosylation, pointing to a highly O-glycosylated region on the mucin.

Loading...
Thumbnail Image
Item

Label‐Free Imaging of Cholesterol Assemblies Reveals Hidden Nanomechanics of Breast Cancer Cells

2020, Dumitru, Andra C., Mohammed, Danahe, Maja, Mauriane, Yang, Jinsung, Verstraeten, Sandrine, del Campo, Aranzazu, Mingeot-Leclercq, Marie-Paule, Tyteca, Donatienne, Alsteens, David

Tumor cells present profound alterations in their composition, structural organization, and functional properties. A landmark of cancer cells is an overall altered mechanical phenotype, which so far are linked to changes in their cytoskeletal regulation and organization. Evidence exists that the plasma membrane (PM) of cancer cells also shows drastic changes in its composition and organization. However, biomechanical characterization of PM remains limited mainly due to the difficulties encountered to investigate it in a quantitative and label‐free manner. Here, the biomechanical properties of PM of a series of MCF10 cell lines, used as a model of breast cancer progression, are investigated. Notably, a strong correlation between the cell PM elasticity and oncogenesis is observed. The altered membrane composition under cancer progression, as emphasized by the PM‐associated cholesterol levels, leads to a stiffening of the PM that is uncoupled from the elastic cytoskeletal properties. Conversely, cholesterol depletion of metastatic cells leads to a softening of their PM, restoring biomechanical properties similar to benign cells. As novel therapies based on targeting membrane lipids in cancer cells represent a promising approach in the field of anticancer drug development, this method contributes to deciphering the functional link between PM lipid content and disease.

Loading...
Thumbnail Image
Item

Single layer graphene induces load-bearing molecular layering at the hexadecane-steel interface

2019, Krämer, G., Kim, C., Kim, K.-S., Bennewitz, R.

The influence of a single layer graphene on the interface between a polished steel surface and the model lubricant hexadecane is explored by high-resolution force microscopy. Nanometer-scale friction is reduced by a factor of three on graphene compared to the steel substrate, with an ordered layer of hexadecane adsorbed on the graphene. Graphene furthermore induces a molecular ordering in the confined lubricant with an average range of 4-5 layers and with a strongly increased load-bearing capacity compared to the lubricant on the bare steel substrate. © 2019 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Stiffness Tomography of Ultra-Soft Nanogels by Atomic Force Microscopy

2020, Schulte, M. Friederike, Bochenek, Steffen, Brugnoni, Monia, Scotti, Andrea, Mourran, Ahmed, Richtering, Walter

The softness of nanohydrogels results in unique properties and recently attracted tremendous interest due to the multi-functionalization of interfaces. Herein, we study extremely soft temperature-sensitive ultra-low cross-linked (ULC) nanogels adsorbed to the solid/water interface by atomic force microscopy (AFM). The ultra-soft nanogels seem to disappear in classical imaging modes since a sharp tip fully penetrates these porous networks with very low forces in the range of steric interactions (ca. 100 pN). However, the detailed evaluation of Force Volume mode measurements allows us to resolve their overall shape and at the same time their internal structure in all three dimensions. The nanogels exhibit an extraordinary disk-like and entirely homogeneous but extremely soft structure—even softer than polymer brushes. Moreover, the temperature-sensitive nanogels can be switched on demand between the ultra-soft and a very stiff state. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering

2016, Cowcher, David P., Deckert-Gaudig, Tanja, Brewster, Victoria L., Ashton, Lorna, Deckert, Volker, Goodacre, Royston

The correct glycosylation of biopharmaceutical glycoproteins and their formulations is essential for them to have the desired therapeutic effect on the patient. It has recently been shown that Raman spectroscopy can be used to quantify the proportion of glycosylated protein from mixtures of native and glycosylated forms of bovine pancreatic ribonuclease (RNase). Here we show the first steps toward not only the detection of glycosylation status but the characterization of glycans themselves from just a few protein molecules at a time using tip-enhanced Raman scattering (TERS). While this technique generates complex data that are very dependent on the protein orientation, with the careful development of combined data preprocessing, univariate and multivariate analysis techniques, we have shown that we can distinguish between the native and glycosylated forms of RNase. Many glycoproteins contain populations of subtly different glycoforms; therefore, with stricter orientation control, we believe this has the potential to lead to further glycan characterization using TERS, which would have use in biopharmaceutical synthesis and formulation research.

Loading...
Thumbnail Image
Item

The 2018 correlative microscopy techniques roadmap

2018, Ando, Toshio, Bhamidimarri, Satya Prathyusha, Brending, Niklas, Colin-York, H, Collinson, Lucy, De Jonge, Niels, de Pablo, P J, Debroye, Elke, Eggeling, Christian, Franck, Christian, Fritzsche, Marco, Gerritsen, Hans, Giepmans, Ben N G, Grunewald, Kay, Hofkens, Johan, Hoogenboom, Jacob P, Janssen, Kris P F, Kaufmann, Rainer, Klumpermann, Judith, Kurniawan, Nyoman, Kusch, Jana, Liv, Nalan, Parekh, Viha, Peckys, Diana B, Rehfeldt, Florian, Reutens, David C, Roeffaers, Maarten B J, Salditt, Tim, Schaap, Iwan A T, Schwarz, Ulrich S, Verkade, Paul, Vogel, Michael W, Wagner, Richard, Winterhalter, Mathias, Yuan, Haifeng, Zifarelli, Giovanni

Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell–cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure–function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.

Loading...
Thumbnail Image
Item

Structure formation of ultrathin PEO films at solid interfaces-complex pattern formation by dewetting and crystallization

2013, Braun, H.-G., Meyer, E.

The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

Loading...
Thumbnail Image
Item

Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings

2017, Buzzacchera, Irene, Vorobii, Mariia, Kostina, Nina Yu, de Los Santos Pereira, Andres, Riedel, Tomáš, Bruns, Michael, Ogieglo, Wojciech, Möller, Martin, Wilson, Christopher J., Rodriguez-Emmenegger, Cesar

Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

Loading...
Thumbnail Image
Item

Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes

2019, Li, Y., Kovačič, M., Westphalen, J., Oswald, S., Ma, Z., Hänisch, C., Will, P.-A., Jiang, L., Junghaehnel, M., Scholz, R., Lenk, S., Reineke, S.

Organic light-emitting diodes (OLEDs) suffer from notorious light trapping, resulting in only moderate external quantum efficiencies. Here, we report a facile, scalable, lithography-free method to generate controllable nanostructures with directional randomness and dimensional order, significantly boosting the efficiency of white OLEDs. Mechanical deformations form on the surface of poly(dimethylsiloxane) in response to compressive stress release, initialized by reactive ions etching with periodicity and depth distribution ranging from dozens of nanometers to micrometers. We demonstrate the possibility of independently tuning the average depth and the dominant periodicity. Integrating these nanostructures into a two-unit tandem white organic light-emitting diode, a maximum external quantum efficiency of 76.3% and a luminous efficacy of 95.7 lm W−1 are achieved with extracted substrate modes. The enhancement factor of 1.53 ± 0.12 at 10,000 cd m−2 is obtained. An optical model is built by considering the dipole orientation, emitting wavelength, and the dipole position on the sinusoidal nanotexture.

Loading...
Thumbnail Image
Item

Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

2017, Huber, D., Reindl, M., Huo, Y., Huang, H., Wildmann, J.S., Schmidt, O.G., Rastelli, A., Trotta, R.

The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.