Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites

2009, Tuch, T.M., Haudek, A., Müller, T., Nowak, A., Wex, H., Wiedensohler, A.

Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% r.H. to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 week experiment. The lower 50% cut-off was found to be smaller than 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One dryer has been successfully deployed in the Amazon river basin. We present data from this monitoring site for the first 6 months of measurements (February 2008–August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/−7.5% r.H. compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions.

Loading...
Thumbnail Image
Item

Object detection networks and augmented reality for cellular detection in fluorescence microscopy

2020, Waithe, Dominic, Brown, Jill M., Reglinski, Katharina, Diez-Sevilla, Isabel, Roberts, David, Eggeling, Christian

Object detection networks are high-performance algorithms famously applied to the task of identifying and localizing objects in photography images. We demonstrate their application for the classification and localization of cells in fluorescence microscopy by benchmarking four leading object detection algorithms across multiple challenging 2D microscopy datasets. Furthermore we develop and demonstrate an algorithm that can localize and image cells in 3D, in close to real time, at the microscope using widely available and inexpensive hardware. Furthermore, we exploit the fast processing of these networks and develop a simple and effective augmented reality (AR) system for fluorescence microscopy systems using a display screen and back-projection onto the eyepiece. We show that it is possible to achieve very high classification accuracy using datasets with as few as 26 images present. Using our approach, it is possible for relatively nonskilled users to automate detection of cell classes with a variety of appearances and enable new avenues for automation of fluorescence microscopy acquisition pipelines. © 2020 Waithe et al.

Loading...
Thumbnail Image
Item

Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century

2019, Gidden, Matthew J., Riahi, Keywan, Smith, Steven J., Fujimori, Shinichiro, Luderer, Gunnar, Kriegler, Elmar, van Vuuren, Detlef P., van den Berg, Maarten, Feng, Leyang, Klein, David, Calvin, Katherine, Doelman, Jonathan C., Frank, Stefan, Fricko, Oliver, Harmsen, Mathijs, Hasegawa, Tomoko, Havlik, Petr, Hilaire, Jérôme, Hoesly, Rachel, Horing, Jill, Popp, Alexander, Stehfest, Elke, Takahashi, Kiyoshi

We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated assessment model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emissions source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios is bounded on the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2 scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario

Loading...
Thumbnail Image
Item

An 8-fold parallel reactor system for combinatorial catalysis research

2006, Stoll, N., Allwardt, A., Dingerdissen, U., Thurow, K.

Increasing economic globalization and mounting time and cost pressure on the development of new raw materials for the chemical industry as well as materials and environmental engineering constantly raise the demands on technologies to be used. Parallelization, miniaturization, and automation are the main concepts involved in increasing the rate of chemical and biological experimentation. Copyright © 2006 Norbert Stoll et al.