Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Calciothermic Synthesis of Very Fine, Hydrogenated Ti and Ti–Nb Powder for Biomedical Applications

2020, Lindemann, Inge, Gebel, Bernhard, Pilz, Stefan, Uhlemann, Margitta, Gebert, Annett

Due to their excellent biocompatibility, titanium and titanium–niobium alloys are especially interesting for biomedical applications. With regard to favorable near-net shape production, Ti powder synthesis is the key hurdle. Extensive research has been in progress for alternative synthesis methods since decades. Herein, an efficient alternative method to the conventional powder production process to prepare spherical powders with very small sizes (<45 μm) for high-strength materials is shown. Very fine, hydrogenated Ti and Ti–Nb alloy powders are stable in air and are synthesized by calciothermic reduction in hydrogen. The herein presented reduction using CaH2 starts directly from the oxides instead of chlorides. Correlations of size and morphology of the as-synthesized TiH2 and (Ti,Nb)H2 powders with the precursors (TiO2, Nb2O5, and CaH2) are illustrated and are used to tailor the desired powders.

Loading...
Thumbnail Image
Item

Application of Thermal Response Measurements to Investigate Enhanced Water Adsorption Kinetics in Ball-Milled C2N-Type Materials

2022, Du, Shengjun, Leistenschneider, Desirée, Xiao, Jing, Dellith, Jan, Troschke, Erik, Oschatz, Martin

Sorption-based water capture is an attractive solution to provide potable water in arid regions. Heteroatom-decorated microporous carbons with hydrophilic character are promising candidates for water adsorption at low humidity, but the strong affinity between the polar carbon pore walls and water molecules can hinder the water transport within the narrow pore system. To reduce the limitations of mass transfer, C2N-type carbon materials obtained from the thermal condensation of a molecular hexaazatriphenylene-hexacarbonitrile (HAT-CN) precursor were treated mechanochemically via ball milling. Scanning electron microscopy as well as static light scattering reveal that large pristine C2N-type particles were split up to a smaller size after ball milling, thus increasing the pore accessibility which consequently leads to faster occupation of the water vapor adsorption sites. The major aim of this work is to demonstrate the applicability of thermal response measurements to track these enhanced kinetics of water adsorption. The adsorption rate constant of a C2N material condensed at 700 °C remarkably increased from 0.026 s−1 to 0.036 s−1 upon ball milling, while maintaining remarkably high water vapor capacity. This work confirms the advantages of small particle sizes in ultramicroporous materials on their vapor adsorption kinetics. It is demonstrated that thermal response measurements are a valuable and time-saving method to investigate water adsorption kinetics, capacities, and cycling stability.