Search Results

Now showing 1 - 2 of 2
  • Item
    Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory
    (Göttingen : Copernicus Publ., 2017) Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif
    Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion approach is able to image the northern fracture zone successfully. In addition, previously unknown sedimentary deposits with a significantly large thickness are detected in the otherwise unusually well-documented geological environment. The results significantly improve the imaging of some geologic features, which would have been undetected or misinterpreted otherwise, and combines the images by means of cluster analysis into a conceptual subsurface model.
  • Item
    Interaction of marine ice-sheet instabilities in two drainage basins: Simple scaling of geometry and transition time
    (München : European Geopyhsical Union, 2015) Feldmann, J.; Levermann, A.
    The initiation of a marine ice-sheet instability (MISI) is generally discussed from the ocean side of the ice sheet. It has been shown that the reduction in ice-shelf buttressing and softening of the coastal ice can destabilize a marine ice sheet if the bedrock is sloping upward towards the ocean. Using a conceptional flow-line geometry, we investigate the possibility of whether a MISI can be triggered from the direction of the ice divide as opposed to coastal forcing and explore the interaction between connected basins. We find that the initiation of a MISI in one basin can induce a destabilization in the other. The underlying mechanism of basin interaction is based on dynamic thinning and a consecutive motion of the ice divide which induces a thinning in the adjacent basin and a successive initiation of the instability. Our simplified and symmetric topographic setup allows scaling both the geometry and the transition time between both instabilities. We find that the ice profile follows a universal shape that is scaled with the horizontal extent of the ice sheet and that the same exponent of 1/2 applies for the scaling relation between central surface elevation and horizontal extent as in the pure shallow ice approximation (Vialov profile). Altering the central bed elevation, we find that the extent of grounding-line retreat in one basin determines the degree of interaction with the other. Different scenarios of basin interaction are discussed based on our modeling results as well as on a conceptual flux-balance analysis. We conclude that for the three-dimensional case, the possibility of drainage basin interaction on timescales on the order of 1 kyr or larger cannot be excluded and hence needs further investigation.