Search Results

Now showing 1 - 2 of 2
  • Item
    Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites
    (Washington, DC : ACS Publications, 2018) Pawar, Shital Patangrao; Arjmand, Mohammad; Pötschke, Petra; Krause, Beate; Fischer, Dieter; Bose, Suryasarathi; Sundararaj, Uttandaraman
    Nitrogen-doped multiwall carbon nanotubes (N-MWNTs) with different structures were synthesized by employing chemical vapor deposition and changing the argon/ethane/nitrogen gas precursor ratio and synthesis time, and broadband dielectric properties of their poly(vinylidene fluoride) (PVDF)-based nanocomposites were investigated. The structure, morphology, and electrical conductivity of synthesized N-MWNTs were assessed via Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy, and powder conductivity techniques. The melt compounded PVDF nanocomposites manifested significantly high real part of the permittivity (ϵ′) along with low dissipation factor (tan δϵ) in 0.1 kHz to 1 MHz frequency range, suggesting use as efficient charge-storage materials. Longer synthesis time resulted in enhanced carbon purity as well as higher thermal stability, determined via TGA analysis. The inherent electrical conductivity of N-MWNTs scaled with the carbon purity. The charge-storage ability of the developed PVDF nanocomposites was commensurate with the amount of the nitrogen heteroatom (i.e., self-polarization), carbon purity, and inherent electrical conductivity of N-MWNTs and increased with better dispersion of N-MWNTs in PVDF.
  • Item
    Linear and ring polymers in confined geometries
    (Berlin ; Heidelberg : Springer, 2017) Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Romeis, Dirk
    A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano- and micro-electromechanical devices is analyzed.