Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Absolute dimensions and apsidal motion of the eclipsing binaries V889 Aquilae and V402 Lacertae

2022, Baroch, D., Giménez, A., Morales, J. C., Ribas, I., Herrero, E., Perdelwitz, V., Jordi, C., Granzer, T., Allende Prieto, C.

Context. Double-lined eclipsing binaries allow the direct determination of masses and radii, which are key for testing stellar models. With the launch of the TESS mission, many well-known eclipsing binaries have been observed at higher photometric precision, permitting the improvement of the absolute dimension determinations. Aims. Using TESS data and newly obtained spectroscopic observations, we aim to determine the masses and radii of the eccentric eclipsing binary systems V889 Aql and V402 Lac, together with their apsidal motion parameters. Methods. We simultaneously modelled radial velocity curves and times of eclipse for each target to precisely determine the orbital parameters of the systems, which we used to analyse the light curves and then obtain their absolute dimensions. We compared the obtained values with those predicted by theoretical models. Results. We determined masses and radii of the components of both systems with relative uncertainties lower than 2%. V889 Aql is composed of two stars with masses 2:17±0:02 M⊙ and 2:13±0:01 M⊙ and radii 1:87±0:04 R⊙ and 1:85±0:04 R⊙.We find conclusive evidence of the presence of a third body orbiting V889 Aql with a period of 67 yr. Based on the detected third light and the absence of signal in the spectra, we suggest that this third body could in turn be a binary composed of two ±1.4 M⊙ stars. V402 Lac is composed of two stars with masses 2:80 ± 0:05 M⊙ and 2:78 ± 0:05 M⊙ and radii 2:38 ± 0:03 R⊙ and 2:36 ± 0:03 R⊙. The times of minimum light are compatible with the presence of a third body for this system too, although its period is not yet fully sampled. In both cases we have found a good agreement between the observed apsidal motion rates and the model predictions.

Loading...
Thumbnail Image
Item

On the binary orbit of Henry Draper one (HD 1)

2020, Strassmeier, Klaus G., Weber, Michael

We present our final orbit for the late-type spectroscopic binary Henry Draper one (HD 1). area total of 553 spectra from 13 years of observations are used with our robotic STELLA facility and its high-resolution echelle spectrograph SES. Its long-term radial velocity stability is ≈50 m s−1. A single radial velocity of HD 1 reached an rms residual of 63 m s−1, close to the expected precision. Spectral lines of HD 1 are rotationally broadened with a v sin i of 9.1±0.1 km s−1. The overall spectrum appears single-lined and yielded an orbit with an eccentricity of 0.5056±0.0005 and a semiamplitude of 4.44 km s−1. We constrain and refine the orbital period based on the SES data alone to 2, 318.70±0.32 days, compared to 2, 317.8±1.1 days when including the older dataset published by DAO and Cambridge/Coravel. Owing to the higher precision of the SES data, we base the orbit calculation only on the STELLA/SES velocities so as to not degrade its solution. We redetermine astrophysical parameters for HD 1 from spectrum synthesis and, together with the new Gaia DR-2 parallax, suggest a higher luminosity than published previously.We conclude thatHD1 is a slightly metal-deficient K0 III-II giant 217 times more luminous than the Sun. The secondary remains invisible at optical wavelengths. We present evidence for the existence of a third component.