Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C

2018, Werner, C., Schmidt, H.-P., Gerten, D., Lucht, W., Kammann, C.

Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for delayed action towards phasing-out fossil fuels.

Loading...
Thumbnail Image
Item

Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage

2023, Marzban, Nader, Libra, Judy A., Rotter, Vera Susanne, Ro, Kyoung S., Moloeznik Paniagua, Daniela, Filonenko, Svitlana

Although many studies have investigated the hydrothermal transformation of feedstock biomass, little is known about the stability of the compounds present in the process liquid after the carbonization process is completed. The physicochemical characteristics of hydrothermal carbonization (HTC) liquid products may change over storage time, diminishing the amount of desired products or producing unwanted contaminants. These changes may restrict the use of HTC liquid products. Here, we investigate the effect of storage temperature (20, 4, and −18 °C) and time (weeks 1-12) on structural and compositional changes of selected organic compounds and physicochemical characteristics of the process liquid from the HTC of digested cow manure. ANOVA showed that the storage time has a significant effect on the concentrations of almost all of the selected organic compounds, except acetic acid. Considerable changes in the composition of the process liquid took place at all studied temperatures, including deep freezing at −18 °C. Prominent is the polymerization of aromatic compounds with the formation of precipitates, which settle over time. This, in turn, influences the inorganic compounds present in the liquid phase by chelating or selectively adsorbing them. The implications of these results on the further processing of the process liquid for various applications are discussed.

Loading...
Thumbnail Image
Item

Pyrogenic carbon capture and storage

2019, Schmidt, Hans-Peter, Anca-Couce, Andrés, Hagemann, Nikolas, Werner, Constanze, Gerten, Dieter, Lucht, Wolfgang, Kammann, Claudia

The growth of biomass is considered the most efficient method currently available to extract carbon dioxide from the atmosphere. However, biomass carbon is easily degraded by microorganisms releasing it in the form of greenhouse gases back to the atmosphere. If biomass is pyrolyzed, the organic carbon is converted into solid (biochar), liquid (bio-oil), and gaseous (permanent pyrogas) carbonaceous products. During the last decade, biochar has been discussed as a promising option to improve soil fertility and sequester carbon, although the carbon efficiency of the thermal conversion of biomass into biochar is in the range of 30%–50% only. So far, the liquid and gaseous pyrolysis products were mainly considered for combustion, though they can equally be processed into recalcitrant forms suitable for carbon sequestration. In this review, we show that pyrolytic carbon capture and storage (PyCCS) can aspire for carbon sequestration efficiencies of >70%, which is shown to be an important threshold to allow PyCCS to become a relevant negative emission technology. Prolonged residence times of pyrogenic carbon can be generated (a) within the terrestrial biosphere including the agricultural use of biochar; (b) within advanced bio-based materials as long as they are not oxidized (biochar, bio-oil); and (c) within suitable geological deposits (bio-oil and CO 2 from permanent pyrogas oxidation). While pathway (c) would need major carbon taxes or similar governmental incentives to become a realistic option, pathways (a) and (b) create added economic value and could at least partly be implemented without other financial incentives. Pyrolysis technology is already well established, biochar sequestration and bio-oil sequestration in soils, respectively biomaterials, do not present ecological hazards, and global scale-up appears feasible within a time frame of 10–30 years. Thus, PyCCS could evolve into a decisive tool for global carbon governance, serving climate change mitigation and the sustainable development goals simultaneously. © 2018 John Wiley & Sons Ltd