Search Results

Now showing 1 - 10 of 15
  • Item
    African smoke particles act as cloud condensation nuclei in the wintertime tropical North Atlantic boundary layer over Barbados
    (Katlenburg-Lindau : EGU, 2023) Royer, Haley M.; Pöhlker, Mira L.; Krüger, Ovid; Blades, Edmund; Sealy, Peter; Lata, Nurun Nahar; Cheng, Zezhen; China, Swarup; Ault, Andrew P.; Quinn, Patricia K.; Zuidema, Paquita; Pöhlker, Christopher; Pöschl, Ulrich; Andreae, Meinrat; Gaston, Cassandra J.
    The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud properties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during the summertime dust transport season, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygroscopicity parameter κ derived from size-resolved CCN measurements made during the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN number concentrations as well as the proportions of dust and smoke particles increased, whereas the average κ slightly decreased (κCombining double low line0.46±0.10) from marine background conditions (κCombining double low line0.52±0.09) when the submicron particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust on CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean.
  • Item
    The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean
    (München : European Geopyhsical Union, 2010) Whalley, L.K.; Furneaux, K.L.; Goddard, A.; Lee, J.D.; Mahajan, A.; Oetjen, H.; Read, K.A.; Kaaden, N.; Carpenter, L.J.; Lewis, A.C.; Plane, J.M.C.; Saltzman, E.S.; Wiedensohler, A.; Heard, D.E.
    Fluorescence Assay by Gas Expansion (FAGE) has been used to detect ambient levels of OH and HO2 radicals at the Cape Verde Atmospheric Observatory, located in the tropical Atlantic marine boundary layer, during May and June 2007. Midday radical concentrations were high, with maximum concentrations of 9 ×106 molecule cm−3 and 6×108 molecule cm−3 observed for OH and HO2, respectively. A box model incorporating the detailed Master Chemical Mechanism, extended to include halogen chemistry, heterogeneous loss processes and constrained by all available measurements including halogen and nitrogen oxides, has been used to assess the chemical and physical parameters controlling the radical chemistry. The model was able to reproduce the daytime radical concentrations to within the 1 σ measurement uncertainty of 20% during the latter half of the measurement period but significantly under-predicted [HO2] by 39% during the first half of the project. Sensitivity analyses demonstrate that elevated [HCHO] (~2 ppbv) on specific days during the early part of the project, which were much greater than the mean [HCHO] (328 pptv) used to constrain the model, could account for a large portion of the discrepancy between modelled and measured [HO2] at this time. IO and BrO, although present only at a few pptv, constituted ~19% of the instantaneous sinks for HO2, whilst aerosol uptake and surface deposition to the ocean accounted for a further 23% of the HO2 loss at noon. Photolysis of HOI and HOBr accounted for ~13% of the instantaneous OH formation. Taking into account that halogen oxides increase the oxidation of NOx (NO → NO2), and in turn reduce the rate of formation of OH from the reaction of HO2 with NO, OH concentrations were estimated to be 9% higher overall due to the presence of halogens. The increase in modelled OH from halogen chemistry gives an estimated 9% shorter lifetime for methane in this region, and the inclusion of halogen chemistry is necessary to model the observed daily cycle of O3 destruction that is observed at the surface. Due to surface losses, we hypothesise that HO2 concentrations increase with height and therefore contribute a larger fraction of the O3 destruction than at the surface.
  • Item
    Analysis of nucleation events in the European boundary layer using the regional aerosol-climate model REMO-HAM with a solar radiation-driven OH-proxy
    (München : European Geopyhsical Union, 2014) Pietikäinen, J.-P.; Mikkonen, S.; Hamed, A.; Hienola, A.I.; Birmili, W.; Kulmala, M.; Laaksonen, A.
    This work describes improvements in the regional aerosol–climate model REMO-HAM in order to simulate more realistically the process of atmospheric new particle formation (NPF). A new scheme was implemented to simulate OH radical concentrations using a proxy approach based on observations and also accounting for the effects of clouds upon OH concentrations. Second, the nucleation rate calculation was modified to directly simulate the formation rates of 3 nm particles, which removes some unnecessary steps in the formation rate calculations used earlier in the model. Using the updated model version, NPF over Europe was simulated for the periods 2003–2004 and 2008–2009. The statistics of the simulated particle formation events were subsequently compared to observations from 13 ground-based measurement sites. The new model shows improved agreement with the observed NPF rates compared to former versions and can simulate the event statistics realistically for most parts of Europe.
  • Item
    Diurnal variation of midlatitudinal NO3 column abundance over table mountain facility, California
    (Göttingen : Copernicus GmbH, 2011) Chen, C.M.; Cageao, R.P.; Lawrence, L.; Stutz, J.; Salawitch, R.J.; Jourdain, L.; Li, Q.; Sander, S.P.
    The column abundance of NO3 was measured over Table Mountain Facility, CA (34.4° 117.7° W) from May 2003 through September 2004, using lunar occultation near full moon with a grating spectrometer. The NO 3 column retrieval was performed with the differential optical absorption spectroscopy (DOAS) technique using both the 623 and 662 nm NO 3 absorption bands. Other spectral features such as Fraunhofer lines and absorption from water vapor and oxygen were removed using solar spectra obtained at different airmass factors. We observed a seasonal variation, with nocturnally averaged NO3 columns between 5-7 × 1013 molec cm-2 during October through March, and 5-22 × 10 13 molec cm-2 during April through September. A subset of the data, with diurnal variability vastly different from the temporal profile obtained from one-dimensional stratospheric model calculations, clearly has boundary layer contributions; this was confirmed by simultaneous long-path DOAS measurements. However, even the NO3 columns that did follow the modeled time evolution were often much larger than modeled stratospheric partial columns constrained by realistic temperatures and ozone concentrations. This discrepancy is attributed to substantial tropospheric NO3 in the free troposphere, which may have the same time dependence as stratospheric NO 3.
  • Item
    Characterisation of a new Fast CPC and its application for atmospheric particle measurements
    (München : European Geopyhsical Union, 2011) Wehner, B.; Siebert, H.; Hermann, M.; Ditas, F.; Wiedensohler, A.
    A new Fast CPC (FCPC) using butanol as working fluid has been built based on the setup described by Wang et al. (2002). In this study, we describe the new instrument. The functionality and stable operation of the FCPC in the laboratory, as well as under atmospheric conditions, is demonstrated. The counting efficiency was measured for three temperature differences between FCPC saturator and condenser, 25, 27, and 29 K, subsequently resulting in a lower detection limit between 6.1 and 8.5 nm. Above 25 nm the FCPC reached 98–100% counting efficiency compared to an electrometer used as the reference instrument. The FCPC demonstrated its ability to perform continuous measurements over a few hours in the laboratory with respect to the total particle counting. The instrument has been implemented into the airborne measurement platform ACTOS to perform measurements in the atmospheric boundary layer. Therefore, a stable operation over two hours is required. The mixing time of the new FCPC was estimated in two ways using a time series with highly fluctuating particle number concentrations. The analysis of a sharp ramp due to a concentration change results in a mixing time of 5 ms while a spectral analysis of atmospheric data demonstrates that for frequencies up to 10 Hz coherent structures can be resolved before sampling noise dominates.
  • Item
    ALADINA - An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer
    (München : European Geopyhsical Union, 2015) Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.
    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few metres. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location for more than 1 h, shows comparable values within the range of ± 20 %. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore, additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m in altitude indicate a high variability with distinct layers of aerosol, especially for the small particles of a few nanometres in diameter on 1 particular day. The stratification was almost neutral and two significant aerosol layers were detected with total aerosol number concentrations up to 17 000 ± 3400 cm−3 between 180 and 220 m altitude and 14 000 ± 2800 cm−3 between 550 and 650 m. Apart from those layers, the aerosol distribution was well mixed and reached the total number concentration of less than 8000 ± 1600 cm−3. During another day, the distribution of the small particles in the lowermost ABL was related to the stratification, with continuously decreasing number concentrations from 16 000 ± 3200 cm−3 to a minimum of 4000 ± 800 cm−3 at the top of the inversion at 320 m. Above this, the total number concentration was rather constant. In the region of 500 to 600 m altitude, a significant difference of both CPCs was observed. This event occurred during the boundary layer development in the morning and represents a particle burst within the ABL.
  • Item
    Atmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters
    (Katlenburg-Lindau : EGU, 2018) Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Manninen, Hanna Elina; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram
    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.
  • Item
    Concentration and variability of ice nuclei in the subtropical maritime boundary layer
    (Katlenburg-Lindau : EGU, 2018) Welti, André; Müller, Konrad; Fleming, Zoë L.; Stratmann, Frank
    Measurements of the concentration and variability of ice nucleating particles in the subtropical maritime boundary layer are reported. Filter samples collected in Cabo Verde over the period 2009-2013 are analyzed with a drop freezing experiment with sensitivity to detect the few rare ice nuclei active at low supercooling. The data set is augmented with continuous flow diffusion chamber measurements at temperatures below -24 °C from a 2-month field campaign in Cabo Verde in 2016. The data set is used to address the following questions: what are typical concentrations of ice nucleating particles active at a certain temperature? What affects their concentration and where are their sources? Concentration of ice nucleating particles is found to increase exponentially by 7 orders of magnitude from -5 to -38 °C. Sample-to-sample variation in the steepness of the increase indicates that particles of different origin, with different ice nucleation properties (size, composition), contribute to the ice nuclei concentration at different temperatures. The concentration of ice nuclei active at a specific temperature varies over a range of up to 4 orders of magnitude. The frequency with which a certain ice nuclei concentration is measured within this range is found to follow a lognormal distribution, which can be explained by random dilution during transport. To investigate the geographic origin of ice nuclei, source attribution of air masses from dispersion modeling is used to classify the data into seven typical conditions. While no source could be attributed to the ice nuclei active at temperatures higher than -12 °C, concentrations at lower temperatures tend to be elevated in air masses originating from the Sahara.
  • Item
    Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign
    (München : European Geopyhsical Union, 2011) Hamburger, T.; McMeeking, G.; Minikin, A.; Birmili, W.; Dall'Osto, M.; O'Dowd, C.; Flentje, H.; Henzing, B.; Junninen, H.; Kristensson, A.; de Leeuw, G.; Stohl, A.; Burkhart, J.F.; Coe, H.; Krejci, R.; Petzold, A.
    In May 2008 the EUCAARI-LONGREX aircraft field campaign was conducted within the EUCAARI intensive observational period. The campaign aimed at studying the distribution and evolution of air mass properties on a continental scale. Airborne aerosol and trace gas measurements were performed aboard the German DLR Falcon 20 and the British FAAM BAe-146 aircraft. This paper outlines the meteorological situation over Europe during May 2008 and the temporal and spatial evolution of predominantly anthropogenic particulate pollution inside the boundary layer and the free troposphere. Time series data of six selected ground stations are used to discuss continuous measurements besides the single flights. The observations encompass total and accumulation mode particle number concentration (0.1–0.8 μm) and black carbon mass concentration as well as several meteorological parameters. Vertical profiles of total aerosol number concentration up to 10 km are compared to vertical profiles probed during previous studies. During the first half of May 2008 an anticyclonic blocking event dominated the weather over Central Europe. It led to increased pollutant concentrations within the centre of the high pressure inside the boundary layer. Due to long-range transport the accumulated pollution was partly advected towards Western and Northern Europe. The measured aerosol number concentrations over Central Europe showed in the boundary layer high values up to 14 000 cm−3 for particles in diameter larger 10 nm and 2300 cm−3 for accumulation mode particles during the high pressure period, whereas the middle free troposphere showed rather low concentrations of particulates. Thus a strong negative gradient of aerosol concentrations between the well mixed boundary layer and the clean middle troposphere occurred.
  • Item
    Historical greenhouse gas concentrations for climate modelling (CMIP6)
    (München : European Geopyhsical Union, 2017) Meinshausen, Malte; Vogel, Elisabeth; Nauels, Alexander; Lorbacher, Katja; Meinshausen, Nicolai; Etheridge, David M.; Fraser, Paul J.; Montzka, Stephen A.; Rayner, Peter J.; Trudinger, Cathy M.; Krummel, Paul B.; Beyerle, Urs; Canadell, Josep G.; Daniel, John S.; Enting, Ian G.; Law, Rachel M. Law; Lunder, Chris R.; O'Doherty, Simon; Prinn, Ron G.; Reimann, Stefan; Rubino, Mauro; Velders, Guus J.M.; Vollmer, Martin K.; Wang, Ray H.J.; Weiss, Ray
    Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800000 years. Those elevated GHG concentrations warm the planet and – partially offset by net cooling effects by aerosols – are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project – Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850–2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3ppm, CH4 at 808.2ppb and N2O at 273.0ppb. The data are available at https://esgf-node.llnl.gov/search/input4mips/ and http://www.climatecollege.unimelb.edu.au/cmip6. While the minimum CMIP6 recommendation is to use the global- and annual-mean time series, modelling groups can also choose our monthly and latitudinally resolved concentrations, which imply a stronger radiative forcing in the Northern Hemisphere winter (due to the latitudinal gradient and seasonality).