Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

High-Quality Graphene Using Boudouard Reaction

2022, Grebenko, Artem K., Krasnikov, Dmitry V., Bubis, Anton V., Stolyarov, Vasily S., Vyalikh, Denis V., Makarova, Anna A., Fedorov, Alexander, Aitkulova, Aisuluu, Alekseeva, Alena A., Gilshtein, Evgeniia, Bedran, Zakhar, Shmakov, Alexander N., Alyabyeva, Liudmila, Mozhchil, Rais N., Ionov, Andrey M., Gorshunov, Boris P., Laasonen, Kari, Podzorov, Vitaly, Nasibulin, Albert G.

Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.

Loading...
Thumbnail Image
Item

Pollution events observed during CARIBIC flights in the upper troposphere between South China and the Philippines

2010, Lai, S.C., Baker, A.K., Schuck, T.J., van Velthoven, P., Oram, D.E., Zahn, A., Hermann, M., Weigelt, A., Slemr, F., Brenninkmeijer, C.A.M., Ziereis, H.

A strong pollution episode in the upper troposphere between South China and the Philippines was observed during CARIBIC flights in April 2007. Five pollution events were observed, where enhancements in aerosol and trace gas concentrations including CO, CO2, CH4, non-methane hydrocarbons (NMHCs) and halocarbons were observed along the flight tracks during four sequential flights. The importance of the contribution of biomass/biofuel burning was investigated using chemical tracers, emission factor analysis, back-trajectory analysis and satellite images. The Indochinese peninsula was identified as the probable source region of biomass/biofuel burning. However, enhancements in the urban/industrial tracer C2Cl4 during the events also indicate a substantial contribution from urban anthropogenic emissions. An estimation of the contribution of fossil fuel versus biomass/biofuel to the CO enhancement was made, indicating a biomass/biofuel burning contribution of ~54 to ~92% of the observed CO enhancements. Biomass/biofuel burning was found to be the most important source category during the sampling period.

Loading...
Thumbnail Image
Item

Selective catalytic two-step process for ethylene glycol from carbon monoxide

2016, Dong, Kaiwu, Elangovan, Saravanakumar, Sang, Rui, Spannenberg, Anke, Jackstell, Ralf, Junge, Kathrin, Li, Yuehui, Beller, Matthias

Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C-C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals.

Loading...
Thumbnail Image
Item

Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island

2013, Igel, J., Günther, T., Kuntzer, M.

Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.

Loading...
Thumbnail Image
Item

Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga

2013, Chi, X., Winderlich, J., Mayer, J.-C., Panov, A.V., Heimann, M., Birmili, W., Heintzenberg, J., Cheng, Y., Andreae, M.O.

Siberia is one of few continental regions in the Northern Hemisphere where the atmosphere may sometimes approach pristine background conditions. We present the time series of aerosol and carbon monoxide (CO) measurements between September 2006 and December 2011 at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E). We investigate the seasonal, weekly and diurnal variations of aerosol properties (including absorption and scattering coefficients and derived parameters, such as equivalent black carbon (BCe), Ångström exponent, single scattering albedo, and backscattering ratio) and the CO mixing ratios. Criteria were established to distinguish polluted from near-pristine air masses, providing quantitative characteristics for each type. Depending on the season, 23–36% of the sampling time at ZOTTO was found to be representative of a clean atmosphere. The summer pristine data indicate that primary biogenic and secondary organic aerosol formation are quite strong particle sources in the Siberian taiga. The summer seasons 2007–2008 were dominated by an Aitken mode around 80 nm size, whereas the summer 2009 with prevailing easterly winds produced particles in the accumulation mode around 200 nm size. We found these differences to be mainly related to air temperature, through its effect on the production rates of biogenic volatile organic compounds (VOC) precursor gases. In winter, the particle size distribution peaked at 160 nm, and the footprint of clean background air was characteristic for aged particles from anthropogenic sources at great distances from ZOTTO and diluted biofuel burning emissions from domestic heating. The wintertime polluted air originates mainly from large cities south and southwest of the site; these particles have a dominant mode around 100 nm, and the ΔBCe / ΔCO ratio of 7–11 ng m−3 ppb−1 suggests dominant contributions from coal and biofuel burning for heating. During summer, anthropogenic emissions are the dominant contributor to the pollution particles at ZOTTO, while only 12% of the polluted events are classified as biomass-burning-dominated, but then often associated with extremely high CO concentrations and aerosol absorption coefficients. Two biomass-burning case studies revealed different ΔBCe / ΔCO ratios from different fire types, with the agricultural fires in April~2008 yielding a very high ratio of 21 ng m−3 ppb−1. Overall, we find that anthropogenic sources dominate the aerosol population at ZOTTO most of the time, even during nominally clean episodes in winter, and that near-pristine conditions are encountered only in the growing season and then only episodically.

Loading...
Thumbnail Image
Item

Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol

2015, Alberico, E., Nielsen, M.

The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.

Loading...
Thumbnail Image
Item

Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular films

2023, Zhao, Siqi, Christensen, Oliver, Sun, Zhaozong, Liang, Hongqing, Bagger, Alexander, Torbensen, Kristian, Nazari, Pegah, Lauritsen, Jeppe Vang, Pedersen, Steen Uttrup, Rossmeisl, Jan, Daasbjerg, Kim

Copper offers unique capability as catalyst for multicarbon compounds production in the electrochemical carbon dioxide reduction reaction. In lieu of conventional catalysis alloying with other elements, copper can be modified with organic molecules to regulate product distribution. Here, we systematically study to which extent the carbon dioxide reduction is affected by film thickness and porosity. On a polycrystalline copper electrode, immobilization of porous bipyridine-based films of varying thicknesses is shown to result in almost an order of magnitude enhancement of the intrinsic current density pertaining to ethylene formation while multicarbon products selectivity increases from 9.7 to 61.9%. In contrast, the total current density remains mostly unaffected by the modification once it is normalized with respect to the electrochemical active surface area. Supported by a microkinetic model, we propose that porous and thick films increase both local carbon monoxide partial pressure and the carbon monoxide surface coverage by retaining in situ generated carbon monoxide. This reroutes the reaction pathway toward multicarbon products by enhancing carbon–carbon coupling. Our study highlights the significance of customizing the molecular film structure to improve the selectivity of copper catalysts for carbon dioxide reduction reaction.

Loading...
Thumbnail Image
Item

Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009

2011, Heintzenberg, J., Birmili, W., Otto, R., Andreae, M.O., Mayer, J.-C., Chi, X., Panov, A.

This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8° N; 89.35° E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400–500 cm−3), mid-level concentrations for zonally advected air masses from westerly directions between 55° and 65° N (600–800 cm−3), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm−3). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.

Loading...
Thumbnail Image
Item

Carbon Monoxide Coupling Reactions: A New Concept for the Formation of Hexahydroxybenzene

2020, Rosenthal, Uwe

For linear and cyclic coupling reactions of CO, among other products, the formation of the hexapotassium salt of hexahydroxybenzene is of particular interesting. The interaction of metallic potassium and CO offers, via the assumed K[OC≡CO]K as the result of several carbon monoxide coupling reactions, the formation of C6(OK)6 among other products. To date, only speculations exist about the reaction pathway for these products, which were first described by Liebig in 1834. A novel concept is suggested here, which consists of the single steps (i) reductive coupling of CO, (ii) formation of dihetero-metallacyclopentynes (cis-2,5-diheterobutatriene as formal ethylenedione O=C=C=O complexes), (iii) formation of its dinuclear 1-metalla-2,5-dioxo-cyclopentyne complexes by external coordination of the triple bond, (iv) insertion of CO into the M−C bond of the formed metallacyclopropene, and (v) the reductive elimination of C6(OK)6. The novel aspect of this concept is the formation of dihetero-metallacyclopentynes (in analogy to the well characterized all-C-metallacyclopentynes), which have not been considered in the mechanism of reductive CO coupling reactions. It is expected that the presence of transition-metal impurities would promote the reaction. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014

2020, Tan, Zhaofeng, Hofzumahaus, Andreas, Lu, Keding, Brown, Steven S., Holland, Frank, Huey, Lewis Gregory, Kiendler-Scharr, Astrid, Li, Xin, Liu, Xiaoxi, Ma, Nan, Min, Kyung-Eun, Rohrer, Franz, Shao, Min, Wahner, Andreas, Wang, Yuhang, Wiedensohler, Alfred, Wu, Yusheng, Wu, Zhijun, Zeng, Limin, Zhang, Yuanhang, Fuchs, Hendrik

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature. © 2020 American Chemical Society.