Search Results

Now showing 1 - 2 of 2
  • Item
    Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices
    (Milton Park : Taylor & Francis, 2015) Tominaga, Junji; Kolobov, Alexander V.; Fons, Paul J.; Wang, Xiaomin; Saito, Yuta; Nakano, Takashi; Hase, Muneaki; Murakami, Shuichi; Herfort, Jens; Takagaki, Yukihiko
    Multiferroics, materials in which both magnetic and electric fields can induce each other, resulting in a magnetoelectric response, have been attracting increasing attention, although the induced magnetic susceptibility and dielectric constant are usually small and have typically been reported for low temperatures. The magnetoelectric response usually depends on d-electrons of transition metals. Here we report that in [(GeTe)2(Sb2Te3)l]m superlattice films (where l and m are integers) with topological phase transition, strong magnetoelectric response may be induced at temperatures above room temperature when the external fields are applied normal to the film surface. By ab initio computer simulations, it is revealed that the multiferroic properties are induced due to the breaking of spatial inversion symmetry when the p-electrons of Ge atoms change their bonding geometry from octahedral to tetrahedral. Finally, we demonstrate the existence in such structures of spin memory, which paves the way for a future hybrid device combining nonvolatile phase-change memory and magnetic spin memory.
  • Item
    Epitaxial growth and characterization of GeTe and GeTe/Sb2Te3 superlattices
    (Berlin : Humboldt-Universität zu Berlin, 2017) Wang, Rui Ning
    Die epitaktische Wachstum von GeTe Dünnschichten und Sb2Te3/GeTe Übergittern durch Molekularstrahlepitaxie wird auf drei verschiedenen Silizium Oberflächen gezeigt: Si(111)−(7×7), Si(111)−(√3×√3)R30°−Sb, und Si(111)−(1×1)−H. Mit Röntgenstrukturanalyse wird bewiesen, dass die epitaktische Beziehung der GeTe Schicht von der Oberflächepassievierung abhängig ist; auf einer passivierten Fläche können verdrehte Domänen unterdrückt sein. Dieses Verhalten ähnelt dem, welches bei 2D Materialien zu erwarten wäre, und wird auf die Schwäche der Resonanten ungebundenen Zustände zurückgeführt, die durch Peierls Verzerrung noch schwächer werden.