Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Electronic structure and morphology of dark oxides on zinc generated by electrochemical treatment

2013, Chen, Y., Schneider, P., Liu, B.-J., Borodin, S., Ren, B., Erbe, A.

Oxides formed by electrochemical treatment of metals frequently have properties and structures very different from the respective bulk oxides. Here, electronic structure and chemical composition were investigated for the oxide formed on polycrystalline zinc after electrochemical oxidation, and after subsequent reduction, in a Na2CO3 electrolyte. Photoluminescence and spectroscopic ellipsometry show the presence of states deep in the ZnO band gap in the oxidized sample, which consists of a highly disordered oxide. These states determine the absorption of light in the visible spectral range. After reduction, the characteristics of the ZnO electronic structure have disappeared, leaving a defect-dominated material with a band gap of ∼1.8 eV. Complementary detailed analysis of the morphology of the resulting surfaces shows hexagon-shaped metallic Zn-"nanoplates" to be formed in the reduction step. The optical appearance of the surfaces is dark, because of their efficient extinction of light over a large part of the visible spectrum. The optical appearance is a result of changed surface morphology and electronic structure of the oxide film. Such materials may possess interesting applications in photocatalysis or photoelectrochemistry.

Loading...
Thumbnail Image
Item

Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments

2019, Vollmer, M., Arold, T., Kriegel, M.J., Klemm, V., Degener, S., Freudenberger, J., Niendorf, T.

Iron-based shape memory alloys are promising candidates for large-scale structural applications due to their cost efficiency and the possibility of using conventional processing routes from the steel industry. However, recently developed alloy systems like Fe–Mn–Al–Ni suffer from low recoverability if the grains do not completely cover the sample cross-section. To overcome this issue, here we show that small amounts of titanium added to Fe–Mn–Al–Ni significantly enhance abnormal grain growth due to a considerable refinement of the subgrain sizes, whereas small amounts of chromium lead to a strong inhibition of abnormal grain growth. By tailoring and promoting abnormal grain growth it is possible to obtain very large single crystalline bars. We expect that the findings of the present study regarding the elementary mechanisms of abnormal grain growth and the role of chemical composition can be applied to tailor other alloy systems with similar microstructural features.