Search Results

Now showing 1 - 6 of 6
  • Item
    Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies
    ([London] : Nature Publishing Group UK, 2019) Luderer, Gunnar; Pehl, Michaja; Arvesen, Anders; Gibon, Thomas; Bodirsky, Benjamin L.; de Boer, Harmen Sytze; Fricko, Oliver; Hejazi, Mohamad; Humpenöder, Florian; Iyer, Gokul; Mima, Silvana; Mouratiadou, Ioanna; Pietzcker, Robert C.; Popp, Alexander; van den Berg, Maarten; van Vuuren, Detlef; Hertwich, Edgar G.
    A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.
  • Item
    Projections of temperature-related excess mortality under climate change scenarios
    (Amsterdam : Elsevier B.V., 2017) Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; Valdes Ortega, N.; Kan, H.; Osorio, S.; Kyselý, J.; Urban, A.; Jaakkola, J.J.K.; Ryti, N.R.I.; Pascal, M.; Goodman, P.G.; Zeka, A.; Michelozzi, P.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Diaz, M.; Cesar Cruz, J.; Seposo, X.; Kim, H.; Tobias, A.; Iñiguez, C.; Forsberg, B.; Åström, D.O.; Ragettli, M.S.; Guo, Y.L.; Wu, C.-F.; Zanobetti, A.; Schwartz, J.; Bell, M.L.; Dang, T.N.; Van, D.D.; Heaviside, C.; Vardoulakis, S.; Hajat, S.; Haines, A.; Armstrong, B.
    Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks. Funding: UK Medical Research Council.
  • Item
    Impacts of climate change on agro-climatic suitability of major food crops in Ghana
    (San Francisco, California, US : PLOS, 2020) Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81–0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.
  • Item
    Taking stock of national climate policies to evaluate implementation of the Paris Agreement
    ([London] : Nature Publishing Group UK, 2020) Roelfsema, Mark; van Soest, Heleen L.; Harmsen, Mathijs; van Vuuren, Detlef P.; Bertram, Christoph; den Elzen, Michel; Höhne, Niklas; Iacobuta, Gabriela; Krey, Volker; Kriegler, Elmar; Luderer, Gunnar; Riahi, Keywan; Ueckerdt, Falko; Després, Jacques; Drouet, Laurent; Emmerling, Johannes; Frank, Stefan; Fricko, Oliver; Gidden, Matthew; Humpenöder, Florian; Huppmann, Daniel; Fujimori, Shinichiro; Fragkiadakis, Kostas; Gi, Keii; Keramidas, Kimon; Köberle, Alexandre C.; Aleluia Reis, Lara; Rochedo, Pedro; Schaeffer, Roberto; Oshiro, Ken; Vrontisi, Zoi; Chen, Wenying; Iyer, Gokul C.; Edmonds, Jae; Kannavou, Maria; Jiang, Kejun; Mathur, Ritu; Safonov, George; Vishwanathan, Saritha Sudharmma
    Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
  • Item
    Reply to Burgess et al: Catastrophic climate risks are neglected, plausible, and safe to study
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
  • Item
    Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action
    (London : Nature Publishing Group, 2018) Mengel, M.; Nauels, A.; Rogelj, J.; Schleussner, C.-F.
    Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.