Search Results

Now showing 1 - 5 of 5
  • Item
    Early retirement of power plants in climate mitigation scenarios
    (Bristol : IOP Publ., 2020) Fofrich, Robert; Tong, Dan; Calvin, Katherine; De Boer, Harmen Sytze; Emmerling, Johannes; Fricko, Oliver; Fujimori, Shinichiro; Luderer, Gunnar; Rogelj, Joeri; Davis, Steven J.
    International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
  • Item
    Implications of non-linearities between cumulative CO2 emissions and CO2-induced warming for assessing the remaining carbon budget
    (Bristol : IOP Publ., 2020) Nicholls, Z.R.J.; Gieseke, R.; Lewis, J.; Nauels, A.; Meinshausen, M.
    To determine the remaining carbon budget, a new framework was introduced in the Intergovernmental Panel on Climate Change's Special Report on Global Warming of 1.5 °C (SR1.5). We refer to this as a 'segmented' framework because it considers the various components of the carbon budget derivation independently from one another. Whilst implementing this segmented framework, in SR1.5 the assumption was that there is a strictly linear relationship between cumulative CO2 emissions and CO2-induced warming i.e. the TCRE is constant and can be applied to a range of emissions scenarios. Here we test whether such an approach is able to replicate results from model simulations that take the climate system's internal feedbacks and non-linearities into account. Within our modelling framework, following the SR1.5's choices leads to smaller carbon budgets than using simulations with interacting climate components. For 1.5 °C and 2 °C warming targets, the differences are 50 GtCO2 (or 10%) and 260 GtCO2 (or 17%), respectively. However, by relaxing the assumption of strict linearity, we find that this difference can be reduced to around 0 GtCO2 for 1.5 °C of warming and 80 GtCO2 (or 5%) for 2.0 °C of warming (for middle of the range estimates of the carbon cycle and warming response to anthropogenic emissions). We propose an updated implementation of the segmented framework that allows for the consideration of non-linearities between cumulative CO2 emissions and CO2-induced warming.
  • Item
    The role of beliefs, expectations and values in decision-making favoring climate change adaptation—implications for communications with European forest professionals
    (Bristol : IOP Publ., 2020) Blennow, K.; Persson, J.; Gonçalves, L.M.S.; Borys, A.; Dutcă, I.; Hynynen, J.; Janeczko, E.; Lyubenova, M.; Merganič, J.; Merganičová, K.; Peltoniemi, M.; Petr, M.; Reboredo, F.; Vacchiano, G.; Reyer, C.P.O.
    Beliefs, expectations and values are often assumed to drive decisions about climate change adaptation. We tested hypotheses based on this assumption using survey responses from 508 European forest professionals in ten countries. We used the survey results to identify communication needs and the decision strategies at play, and to develop guidelines on adequate communications about climate change adaptation. We observed polarization in the positive and negative values associated with climate change impacts accepted by survey respondents. We identified a mechanism creating the polarization that we call the 'blocked belief' effect. We found that polarized values did not correlate with decisions about climate change adaptation. Strong belief in the local impacts of climate change on the forest was, however, a prerequisite of decision-making favoring adaptation. Decision-making in favor of adaptation to climate change also correlated with net values of expected specific impacts on the forest and generally increased with the absolute value of these in the absence of 'tipping point' behavior. Tipping point behavior occurs when adaptation is not pursued in spite of the strongly negative or positive net value of expected climate change impacts. We observed negative and positive tipping point behavior, mainly in SW Europe and N-NE Europe, respectively. In addition we found that advice on effective adaptation may inhibit adaptation when the receiver is aware of effective adaptation measures unless it is balanced with information explaining how climate change leads to negative impacts. Forest professionals with weak expectations of impacts require communications on climate change and its impacts on forests before any advice on adaptation measures can be effective. We develop evidence-based guidelines on communications using a new methodology which includes Bayesian machine learning modeling of the equivalent of an expected utility function for the adaptation decision problem.
  • Item
    Integrate health into decision-making to foster climate action
    (Bristol : IOP Publ., 2021-4-8) Vandyck, Toon; Rauner, Sebastian; Sampedro, Jon; Lanzi, Elisa; Reis, Lara Aleluia; Springmann, Marco; Dingenen, Rita Van
    The COVID-19 pandemic reveals that societies place a high value on healthy lives. Leveraging this momentum to establish a more central role for human health in the policy process will provide further impetus to a sustainable transformation of energy and food systems.
  • Item
    First process-based simulations of climate change impacts on global tea production indicate large effects in the World’s major producer countries
    (Bristol : IOP Publ., 2020) Beringer, Tim; Kulak, Michal; Müller, Christoph; Schaphoff, Sibyll; Jans, Yvonne
    Modeling of climate change impacts have mainly been focused on a small number of annual staple crops that provide most of the world's calories. Crop models typically do not represent perennial crops despite their high economic, nutritional, or cultural value. Here we assess climate change impacts on global tea production, chosen because of its high importance in culture and livelihoods of people around the world. We extended the dynamic global vegetation model with managed land, LPJmL4, global crop model to simulate the cultivation of tea plants. Simulated tea yields were validated and found in good agreement with historical observations as well as experiments on the effects of increasing CO2 concentrations. We then projected yields into the future under a range of climate scenarios from the Inter-Sectoral Impact Model Intercomparison Project. Under current irrigation levels and lowest climate change scenarios, tea yields are expected to decrease in major producing countries. In most climate scenarios, we project that tea yields are set to increase in China, India, and Vietnam. However, yield losses are expected to affect Kenya, Indonesia, and Sri Lanka. If abundant water supply and full irrigation is assumed for all tea cultivation areas, yields are projected to increase in all regions.