Search Results

Now showing 1 - 10 of 32
  • Item
    The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: Quantifying committed climate changes following zero carbon emissions
    (Katlenburg-Lindau : Copernicus, 2019) Jones, Chris D.; Frölicher, Thomas L.; Koven, Charles; MacDougall, Andrew H.; Matthews, H. Damon; Zickfeld, Kirsten; Rogelj, Joeri; Tokarska, Katarzyna B.; Gillett, Nathan P.; Ilyina, Tatiana; Meinshausen, Malte; Mengis, Nadine; Séférian, Roland; Eby, Michael; Burger, Friedrich A.
    The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
  • Item
    Impacts of climate change on agro-climatic suitability of major food crops in Ghana
    (San Francisco, California, US : PLOS, 2020) Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81–0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.
  • Item
    Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry
    (Cambridge : Soc., 2015) Hanf, Stefan; Fischer, Sarah; Hartmann, Henrik; Keiner, Robert; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten
    Photosynthesis and respiration are major components of the plant carbon balance. During stress, like drought, carbohydrate supply from photosynthesis is reduced and the Krebs cycle respiration must be fueled with other stored carbon compounds. However, the dynamics of storage use are still unknown. The respiratory quotient (RQ, CO2 released per O2 consumed during respiration) is an excellent indicator of the nature of the respiration substrate. In plant science, however, online RQ measurements have been challenging or even impossible so far due to very small gas exchange fluxes during respiration. Here we apply cavity-enhanced multi-gas Raman spectrometry (CERS) for online in situ RQ measurements in drought-tolerant pine (Pinus sylvestris [L.]) and drought-intolerant spruce (Picea abies [L. H. Karst]). Two different treatments, drought and shading, were applied to reduce photosynthesis and force dependency on stored substrates. Changes in respiration rates and RQ values were continuously monitored over periods of several days with low levels of variance. The results show that both species switched from COH-dominated respiration (RQ = 1.0) to a mixture of substrates during shading (RQ = 0.77–0.81), while during drought only pine did so (RQ = 0.75). The gas phase measurements were complemented by concentration measurements of non-structural carbohydrates and lipids. These first results suggest a physiological explanation for greater drought tolerance in pine. CERS was proven as powerful technique for non-consumptive and precise real-time monitoring of respiration rates and respirational quotients for the investigation of plant metabolism under drought stress conditions that are predicted to increase with future climate change.
  • Item
    Social tipping dynamics for stabilizing Earth's climate by 2050
    (2020) Otto, Ilona M.; Donges, Jonathan F.; Cremades, Roger; Bhowmik, Avit; Hewitt, Richard J.; Lucht, Wolfgang; Rockström, Johan; Allerberger, Franziska; McCaffrey, Mark; Doe, Sylvanus S.P.; Lenferna, Alex; Morán, Nerea; van Vuuren, Detlef P.; Schellnhuber, Hans Joachim
    Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STEs). STEs are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.
  • Item
    Bioenergy for climate change mitigation: Scale and sustainability
    (Oxford : Wiley-Blackwell, 2021) Calvin, Katherine; Cowie, Annette; Berndes, Göran; Arneth, Almut; Cherubini, Francesco; Portugal‐Pereira, Joana; Grassi, Giacomo; House, Jo; Johnson, Francis X.; Popp, Alexander; Rounsevell, Mark; Slade, Raphael; Smith, Pete
    Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.
  • Item
    Physics in the mesosphere/lower thermosphere: A personal perspective
    (Lausanne : Frontiers Media, 2022) Lübken, Franz-Josef
    The scope of this paper is to present some progress being made in the last few decades regarding some aspects of physical processes in the mesosphere/lower thermosphere and to point to some open questions. This summary is presented from a personal perspective, i.e., this is not a review of a certain science topic. Most citations reflect my own work or are representative examples only. They are not meant to be complete or comprehensive.
  • Item
    Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100
    (San Francisco, California, US : PLOS, 2020) Hänsel, Martin C.; Schmidt, Jörn O.; Stiasny, Martina H.; Stöven, Max T.; Voss, Rudi; Quaas, Martin F.
    The Arctic Ocean is an early warning system for indicators and effects of climate change. We use a novel combination of experimental and time-series data on effects of ocean warming and acidification on the commercially important Northeast Arctic cod (Gadus morhua) to incorporate these physiological processes into the recruitment model of the fish population. By running an ecological-economic optimization model, we investigate how the interaction of ocean warming, acidification and fishing pressure affects the sustainability of the fishery in terms of ecological, economic, social and consumer-related indicators, ranging from present day conditions up to future climate change scenarios. We find that near-term climate change will benefit the fishery, but under likely future warming and acidification this large fishery is at risk of collapse by the end of the century, even with the best adaptation effort in terms of reduced fishing pressure.
  • Item
    Communicating sentiment and outlook reverses inaction against collective risks
    (Washington, DC : National Acad. of Sciences, 2020) Wang, Zhen; Jusup, Marko; Guo, Hao; Shi, Lei; Geček, Sunčana; Anand, Madhur; Perc, Matjaž; Bauch, Chris T.; Kurths, Jürgen; Boccaletti, Stefano; Schellnhuber, Hans Joachim
    Collective risks permeate society, triggering social dilemmas in which working toward a common goal is impeded by selfish interests. One such dilemma is mitigating runaway climate change. To study the social aspects of climate-change mitigation, we organized an experimental game and asked volunteer groups of three different sizes to invest toward a common mitigation goal. If investments reached a preset target, volunteers would avoid all consequences and convert their remaining capital into monetary payouts. In the opposite case, however, volunteers would lose all their capital with 50% probability. The dilemma was, therefore, whether to invest one's own capital or wait for others to step in. We find that communicating sentiment and outlook helps to resolve the dilemma by a fundamental shift in investment patterns. Groups in which communication is allowed invest persistently and hardly ever give up, even when their current investment deficits are substantial. The improved investment patterns are robust to group size, although larger groups are harder to coordinate, as evidenced by their overall lower success frequencies. A clustering algorithm reveals three behavioral types and shows that communication reduces the abundance of the free-riding type. Climate-change mitigation, however, is achieved mainly by cooperator and altruist types stepping up and increasing contributions as the failure looms. Meanwhile, contributions from free riders remain flat throughout the game. This reveals that the mechanisms behind avoiding collective risks depend on an interaction between behavioral type, communication, and timing.
  • Item
    Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland
    (Wien [u.a.] : Springer, 2020) Piniewski, Mikołaj; Marcinkowski, Paweł; O’Keeffe, Joanna; Szcześniak, Mateusz; Nieróbca, Anna; Kozyra, Jerzy; Kundzewicz, Zbigniew W.; Okruszko, Tomasz
    Evidence shows that soil moisture (SM) anomalies (deficits or excesses) are the key factor affecting crop yield in rain-fed agriculture. Over last decades, Poland has faced several major droughts and at least one major soil moisture excess event leading to severe crop losses. This study aims to simulate the multi-annual variability of SM anomalies in Poland, using a process-based SWAT model and to assess the effect of climate change on future extreme SM conditions, potentially affecting crop yields in Poland. A crop-specific indicator based on simulated daily soil moisture content for the critical development stages of investigated crops (winter cereals, spring cereals, potato and maize) was designed, evaluated for past conditions against empirical crop-weather indices (CWIs), and applied for studying future climate conditions. The study used an ensemble of nine bias-corrected EURO-CORDEX projections for two future horizons: 2021–2050 and 2071–2100 under two Representative Concentration Pathways: RCP4.5 and 8.5. Historical simulation results showed that SWAT was capable of capturing major SM deficit and excess episodes for different crops in Poland. For spring cereals, potato and maize, despite a large model spread, projections generally showed increase of severity of soil moisture deficits, as well as of total area affected by them. Ensemble median fraction of land with extreme soil moisture deficits, occupied by each of these crops, is projected to at least double in size. The signals of change in soil moisture excesses for potato and maize were more dependent on selection of RCP and future horizon. © 2020, The Author(s).
  • Item
    Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites
    (Katlenburg-Lindau : Copernicus, 2020) Lasch-Born, Petra; Suckow, Felicitas; Reyer, Christopher P. O.; Gutsch, Martin; Kollas, Chris; Badeck, Franz-Werner; Bugmann, Harald K. M.; Grote, Rüdiger; Fürstenau, Cornelia; Lindner, Marcus; Schaber, Jörg
    The process-based model 4C (FORESEE) has been developed over the past 20 years to study climate impacts on forests and is now freely available as an open-source tool. The objective of this paper is to provide a comprehensive description of this 4C version (v2.2) for scientific users of the model and to present an evaluation of 4C at four different forest sites across Europe. The evaluation focuses on forest growth as well as carbon (net ecosystem exchange, gross primary production), water (actual evapotranspiration, soil water content), and heat fluxes (soil temperature) using data from the PROFOUND database. We applied different evaluation metrics and compared the daily, monthly, and annual variability of observed and simulated values. The ability to reproduce forest growth (stem diameter and biomass) differs from site to site and is best for a pine stand in Germany (Peitz, model efficiency ME=0.98). 4C is able to reproduce soil temperature at different depths in Sorø and Hyytiälä with good accuracy (for all soil depths ME > 0.8). The dynamics in simulating carbon and water fluxes are well captured on daily and monthly timescales (0.51 < ME < 0.983) but less so on an annual timescale (ME < 0). This model–data mismatch is possibly due to the accumulation of errors because of processes that are missing or represented in a very general way in 4C but not with enough specific detail to cover strong, site-specific dependencies such as ground vegetation growth. These processes need to be further elaborated to improve the projections of climate change on forests. We conclude that, despite shortcomings, 4C is widely applicable, reliable, and therefore ready to be released to the scientific community to use and further develop the model.