Search Results

Now showing 1 - 2 of 2
  • Item
    The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
    (München : European Geopyhsical Union, 2016) O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.
    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.
  • Item
    Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: A multimodel analysis
    (München : European Geopyhsical Union, 2016) Zhao, Fang; Zeng, Ning; Asrar, Ghassem; Friedlingstein, Pierre; Ito, Akihiko; Jain, Atul; Kalnay, Eugenia; Kato, Etsushi; Koven, Charles D.; Poulter, Ben; Rafique, Rashid; Sitch, Stephen; Shu, Shijie; Stocker, Beni; Viovy, Nicolas; Wiltshire, Andy; Zaehle, Sonke
    We examined the net terrestrial carbon flux to the atmosphere (FTA) simulated by nine models from the TRENDY dynamic global vegetation model project for its seasonal cycle and amplitude trend during 1961–2012. While some models exhibit similar phase and amplitude compared to atmospheric inversions, with spring drawdown and autumn rebound, others tend to rebound early in summer. The model ensemble mean underestimates the magnitude of the seasonal cycle by 40 % compared to atmospheric inversions. Global FTA amplitude increase (19 ± 8 %) and its decadal variability from the model ensemble are generally consistent with constraints from surface atmosphere observations. However, models disagree on attribution of this long-term amplitude increase, with factorial experiments attributing 83 ± 56 %, −3 ± 74 and 20 ± 30 % to rising CO2, climate change and land use/cover change, respectively. Seven out of the nine models suggest that CO2 fertilization is the strongest control – with the notable exception of VEGAS, which attributes approximately equally to the three factors. Generally, all models display an enhanced seasonality over the boreal region in response to high-latitude warming, but a negative climate contribution from part of the Northern Hemisphere temperate region, and the net result is a divergence over climate change effect. Six of the nine models show that land use/cover change amplifies the seasonal cycle of global FTA: some are due to forest regrowth, while others are caused by crop expansion or agricultural intensification, as revealed by their divergent spatial patterns. We also discovered a moderate cross-model correlation between FTA amplitude increase and increase in land carbon sink (R2 =  0.61). Our results suggest that models can show similar results in some benchmarks with different underlying mechanisms; therefore, the spatial traits of CO2 fertilization, climate change and land use/cover changes are crucial in determining the right mechanisms in seasonal carbon cycle change as well as mean sink change.