Search Results

Now showing 1 - 8 of 8
  • Item
    Freshwater resources under success and failure of the Paris climate agreement
    (Göttingen : Copernicus Publ., 2019) Heinke, Jens; Müller, Christoph; Lannerstad, Mats; Gerten, Dieter; Lucht, Wolfgang
    Population growth will in many regions increase the pressure on water resources and likely increase the number of people affected by water scarcity. In parallel, global warming causes hydrological changes which will affect freshwater supply for human use in many regions. This study estimates the exposure of future population to severe hydrological changes relevant from a freshwater resource perspective at different levels of global mean temperature rise above pre-industrial level (ΔTglob). The analysis is complemented by an assessment of water scarcity that would occur without additional climate change due to population change alone; this is done to identify the population groups that are faced with particularly high adaptation challenges. The results are analysed in the context of success and failure of implementing the Paris Agreement to evaluate how climate mitigation can reduce the future number of people exposed to severe hydrological change. The results show that without climate mitigation efforts, in the year 2100 about 4.9 billion people in the SSP2 population scenario would more likely than not be exposed to severe hydrological change, and about 2.1 billion of them would be faced with particularly high adaptation challenges due to already prevailing water scarcity. Limiting warming to 2 °C by a successful implementation of the Paris Agreement would strongly reduce these numbers to 615 million and 290 million, respectively. At the regional scale, substantial water-related risks remain at 2 °C, with more than 12% of the population exposed to severe hydrological change and high adaptation challenges in Latin America and the Middle East and north Africa region. Constraining δTglob to 1.5 °C would limit this share to about 5% in these regions. ©2019 Author(s).
  • Item
    Diverging importance of drought stress for maize and winter wheat in Europe
    ([London] : Nature Publishing Group UK, 2018) Webber, Heidi; Ewert, Frank; Olesen, Jørgen E.; Müller, Christoph; Fronzek, Stefan; Ruane, Alex C.; Bourgault, Maryse; Martre, Pierre; Ababaei, Behnam; Bindi, Marco; Ferrise, Roberto; Finger, Robert; Fodor, Nándor; Gabaldón-Leal, Clara; Gaiser, Thomas; Jabloun, Mohamed; Kersebaum, Kurt-Christian; Lizaso, Jon I.; Lorite, Ignacio J.; Manceau, Loic; Moriondo, Marco; Nendel, Claas; Rodríguez, Alfredo; Ruiz-Ramos, Margarita; Semenov, Mikhail A.; Siebert, Stefan; Stella, Tommaso; Stratonovitch, Pierre; Trombi, Giacomo; Wallach, Daniel
    Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
  • Item
    Global cotton production under climate change – Implications for yield and water consumption
    (Munich : EGU, 2021) Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph
    Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, the growth of and irrigation water demand on cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL (Lund Potsdam Jena managed land). We find our modeled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) protocol, we employ an ensemble of five general circulation models under four representative concentration pathways (RCPs) for the 2011 2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from _ 65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production rises by more than 50% by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-Third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000m3 t1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000m3 t1, and reduction continues by up to 30% in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature acts in the opposite direction. Ignoring beneficial CO2 effects, global VWC of cotton would increase for all RCPs except RCP2.6, reaching more than 5000m3 t1 by the end of the simulation period under RCP8.5. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption. The implications of climate impacts on cotton production on the one hand and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. Our results should be regarded as optimistic, because of high uncertainty with respect to CO2 fertilization and the lack of implementing processes of boll abscission under heat stress. Still, the inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
    (Göttingen : Copernicus Publ., 2019) Braakhekke, Maarten C.; Doelman, Jonathan C.; Baas, Peter; Müller, Christoph; Schaphoff, Sibyll; Stehfest, Elke; van Vuuren, Detlef P.
    We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.
  • Item
    First process-based simulations of climate change impacts on global tea production indicate large effects in the World’s major producer countries
    (Bristol : IOP Publ., 2020) Beringer, Tim; Kulak, Michal; Müller, Christoph; Schaphoff, Sibyll; Jans, Yvonne
    Modeling of climate change impacts have mainly been focused on a small number of annual staple crops that provide most of the world's calories. Crop models typically do not represent perennial crops despite their high economic, nutritional, or cultural value. Here we assess climate change impacts on global tea production, chosen because of its high importance in culture and livelihoods of people around the world. We extended the dynamic global vegetation model with managed land, LPJmL4, global crop model to simulate the cultivation of tea plants. Simulated tea yields were validated and found in good agreement with historical observations as well as experiments on the effects of increasing CO2 concentrations. We then projected yields into the future under a range of climate scenarios from the Inter-Sectoral Impact Model Intercomparison Project. Under current irrigation levels and lowest climate change scenarios, tea yields are expected to decrease in major producing countries. In most climate scenarios, we project that tea yields are set to increase in China, India, and Vietnam. However, yield losses are expected to affect Kenya, Indonesia, and Sri Lanka. If abundant water supply and full irrigation is assumed for all tea cultivation areas, yields are projected to increase in all regions.
  • Item
    Comparing impacts of climate change and mitigation on global agriculture by 2050
    (Bristol : IOP Publ., 2018) van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan
    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.
  • Item
    State-of-the-art global models underestimate impacts from climate extremes
    ([London] : Nature Publishing Group UK, 2019) Schewe, Jacob; Gosling, Simon N.; Reyer, Christopher; Zhao, Fang; Ciais, Philippe; Elliott, Joshua; Francois, Louis; Huber, Veronika; Lotze, Heike K.; Seneviratne, Sonia I.; van Vliet, Michelle T. H.; Vautard, Robert; Wada, Yoshihide; Breuer, Lutz; Büchner, Matthias; Carozza, David A.; Chang, Jinfeng; Coll, Marta; Deryng, Delphine; de Wit, Allard; Eddy, Tyler D.; Folberth, Christian; Frieler, Katja; Friend, Andrew D.; Gerten, Dieter; Gudmundsson, Lukas; Hanasaki, Naota; Ito, Akihiko; Khabarov, Nikolay; Kim, Hyungjun; Lawrence, Peter; Morfopoulos, Catherine; Müller, Christoph; Müller Schmied, Hannes; Orth, René; Ostberg, Sebastian; Pokhrel, Yadu; Pugh, Thomas A. M.; Sakurai, Gen; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Steenbeek, Jeroen; Steinkamp, Jörg; Tang, Qiuhong; Tian, Hanqin; Tittensor, Derek P.; Volkholz, Jan; Wang, Xuhui; Warszawski, Lila
    Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  • Item
    The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
    (Katlenburg-Lindau : Copernicus, 2020) Franke, James A.; Müller, Christoph; Elliott, Joshua; Ruane, Alex C.; Jägermeyr, Jonas; Balkovic, Juraj; Ciais, Philippe; Dury, Marie; Falloon, Pete D.; Folberth, Christian; François, Louis; Hank, Tobias; Hoffmann, Munir; Izaurralde, R. Cesar; Jacquemin, Ingrid; Jones, Curtis; Khabarov, Nikolay; Koch, Marian; Li, Michelle; Liu, Wenfeng; Olin, Stefan; Phillips, Meridel; Pugh, Thomas A. M.; Reddy, Ashwan; Wang, Xuhui; Williams, Karina; Zabel, Florian; Moyer, Elisabeth J.
    Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.