Search Results

Now showing 1 - 10 of 148
  • Item
    Using Meta-Analysis and GIS for Value Transfer and Scaling Up: Valuing Climate Change Induced Losses of European Wetlands
    (Dordrecht : Springer, 2012) Brander, L.M.; Bräuer, I.; Gerdes, H.; Ghermandi, A.; Kuik, O.; Markandya, A.; Navrud, S.; Nunes, P.A.L.D.; Schaafsma, M.; Vos, H.; Wagtendonk, A.
    There is growing policy and academic interest in transferring ecosystem service values from existing valuation studies to other ecosystem sites at a large geographic scale. Despite the evident policy demand for this combined transfer and "scaling up" of values, an approach to value transfer that addresses the challenges inherent in assessing ecosystem changes at a national or regional level is not available. This paper proposes a methodology for scaling up ecosystem service values to estimate the welfare effects of ecosystem change at this larger geographical scale. The methodology is illustrated by applying it to value the impact of climate change on European wetlands for the period 2000-2050. The proposed methodology makes use of meta-analysis to produce a value function. The parameters of the value function include spatial variables on wetland size and abundance, GDP per capita, and population. A geographic information system is used to construct a database of wetland sites in the case study region with information on these spatial variables. Site-specific ecosystem service values are subsequently estimated using the meta-analytic value function. The proposed method is shown to enable the adjustment of transferred values to reflect variation in important spatial variables and to account for changes in the stock of ecosystems.
  • Item
    Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100
    (San Francisco, California, US : PLOS, 2020) Hänsel, Martin C.; Schmidt, Jörn O.; Stiasny, Martina H.; Stöven, Max T.; Voss, Rudi; Quaas, Martin F.
    The Arctic Ocean is an early warning system for indicators and effects of climate change. We use a novel combination of experimental and time-series data on effects of ocean warming and acidification on the commercially important Northeast Arctic cod (Gadus morhua) to incorporate these physiological processes into the recruitment model of the fish population. By running an ecological-economic optimization model, we investigate how the interaction of ocean warming, acidification and fishing pressure affects the sustainability of the fishery in terms of ecological, economic, social and consumer-related indicators, ranging from present day conditions up to future climate change scenarios. We find that near-term climate change will benefit the fishery, but under likely future warming and acidification this large fishery is at risk of collapse by the end of the century, even with the best adaptation effort in terms of reduced fishing pressure.
  • Item
    Robust changes in tropical rainy season length at 1.5 °C and 2 °C
    (Bristol : IOP Publ., 2018) Saeed, Fahad; Bethke, Ingo; Fischer, Erich; Legutke, Stephanie; Shiogama, Hideo; Stone, Dáithí A.; Schleussner, Carl-Friedrich
    Changes in the hydrological cycle are among the aspects of climate change most relevant for human systems and ecosystems. Besides trends in overall wetting or drying, changes in temporal characteristics of wetting and drying are of crucial importance in determining the climate hazard posed by such changes. This is particularly the case for tropical regions, where most precipitation occurs during the rainy season and changes in rainy season onset and length have substantial consequences. Here we present projections for changes in tropical rainy season lengths for mean temperature increase of 1.5 °C and 2 °C above pre-industrial levels. Based on multi-ensemble quasi-stationary simulations at these warming levels, our analysis indicates robust changes in rainy season characteristics in large parts of the tropics despite substantial natural variability. Specifically, we report a robust shortening of the rainy season for all of tropical Africa as well as north-east Brazil. About 27% of West Africa is projected to experience robust changes in the rainy season length with a mean shortening of about 7 days under 1.5 °C. We find that changes in the temporal characteristics are largely unrelated to changes in overall precipitation, highlighting the importance of investigating both separately.
  • Item
    Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland
    (Wien [u.a.] : Springer, 2020) Piniewski, Mikołaj; Marcinkowski, Paweł; O’Keeffe, Joanna; Szcześniak, Mateusz; Nieróbca, Anna; Kozyra, Jerzy; Kundzewicz, Zbigniew W.; Okruszko, Tomasz
    Evidence shows that soil moisture (SM) anomalies (deficits or excesses) are the key factor affecting crop yield in rain-fed agriculture. Over last decades, Poland has faced several major droughts and at least one major soil moisture excess event leading to severe crop losses. This study aims to simulate the multi-annual variability of SM anomalies in Poland, using a process-based SWAT model and to assess the effect of climate change on future extreme SM conditions, potentially affecting crop yields in Poland. A crop-specific indicator based on simulated daily soil moisture content for the critical development stages of investigated crops (winter cereals, spring cereals, potato and maize) was designed, evaluated for past conditions against empirical crop-weather indices (CWIs), and applied for studying future climate conditions. The study used an ensemble of nine bias-corrected EURO-CORDEX projections for two future horizons: 2021–2050 and 2071–2100 under two Representative Concentration Pathways: RCP4.5 and 8.5. Historical simulation results showed that SWAT was capable of capturing major SM deficit and excess episodes for different crops in Poland. For spring cereals, potato and maize, despite a large model spread, projections generally showed increase of severity of soil moisture deficits, as well as of total area affected by them. Ensemble median fraction of land with extreme soil moisture deficits, occupied by each of these crops, is projected to at least double in size. The signals of change in soil moisture excesses for potato and maize were more dependent on selection of RCP and future horizon. © 2020, The Author(s).
  • Item
    Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites
    (Katlenburg-Lindau : Copernicus, 2020) Lasch-Born, Petra; Suckow, Felicitas; Reyer, Christopher P. O.; Gutsch, Martin; Kollas, Chris; Badeck, Franz-Werner; Bugmann, Harald K. M.; Grote, Rüdiger; Fürstenau, Cornelia; Lindner, Marcus; Schaber, Jörg
    The process-based model 4C (FORESEE) has been developed over the past 20 years to study climate impacts on forests and is now freely available as an open-source tool. The objective of this paper is to provide a comprehensive description of this 4C version (v2.2) for scientific users of the model and to present an evaluation of 4C at four different forest sites across Europe. The evaluation focuses on forest growth as well as carbon (net ecosystem exchange, gross primary production), water (actual evapotranspiration, soil water content), and heat fluxes (soil temperature) using data from the PROFOUND database. We applied different evaluation metrics and compared the daily, monthly, and annual variability of observed and simulated values. The ability to reproduce forest growth (stem diameter and biomass) differs from site to site and is best for a pine stand in Germany (Peitz, model efficiency ME=0.98). 4C is able to reproduce soil temperature at different depths in Sorø and Hyytiälä with good accuracy (for all soil depths ME > 0.8). The dynamics in simulating carbon and water fluxes are well captured on daily and monthly timescales (0.51 < ME < 0.983) but less so on an annual timescale (ME < 0). This model–data mismatch is possibly due to the accumulation of errors because of processes that are missing or represented in a very general way in 4C but not with enough specific detail to cover strong, site-specific dependencies such as ground vegetation growth. These processes need to be further elaborated to improve the projections of climate change on forests. We conclude that, despite shortcomings, 4C is widely applicable, reliable, and therefore ready to be released to the scientific community to use and further develop the model.
  • Item
    LPJmL4 - A dynamic global vegetation model with managed land - Part 1: Model description
    (Göttingen : Copernicus GmbH, 2018) Schaphoff, S.; Von Bloh, W.; Rammig, A.; Thonicke, K.; Biemans, H.; Forkel, M.; Gerten, D.; Heinke, J.; Jägermeyr, J.; Knauer, J.; Langerwisch, F.; Lucht, W.; Müller, C.; Rolinski, S.; Waha, K.
    This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates - internally consistently - the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.
  • Item
    Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island
    (Munich : EGU, 2013) Igel, J.; Günther, T.; Kuntzer, M.
    Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.
  • Item
    Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies
    ([London] : Nature Publishing Group UK, 2019) Luderer, Gunnar; Pehl, Michaja; Arvesen, Anders; Gibon, Thomas; Bodirsky, Benjamin L.; de Boer, Harmen Sytze; Fricko, Oliver; Hejazi, Mohamad; Humpenöder, Florian; Iyer, Gokul; Mima, Silvana; Mouratiadou, Ioanna; Pietzcker, Robert C.; Popp, Alexander; van den Berg, Maarten; van Vuuren, Detlef; Hertwich, Edgar G.
    A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.
  • Item
    The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: Quantifying committed climate changes following zero carbon emissions
    (Katlenburg-Lindau : Copernicus, 2019) Jones, Chris D.; Frölicher, Thomas L.; Koven, Charles; MacDougall, Andrew H.; Matthews, H. Damon; Zickfeld, Kirsten; Rogelj, Joeri; Tokarska, Katarzyna B.; Gillett, Nathan P.; Ilyina, Tatiana; Meinshausen, Malte; Mengis, Nadine; Séférian, Roland; Eby, Michael; Burger, Friedrich A.
    The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
  • Item
    Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
    (Göttingen : Copernicus Publ., 2020) Geiges, Andreas; Nauels, Alexander; Yanguas Parra, Paola; Andrijevic, Marina; Hare, William; Pfleiderer, Peter; Schaeffer, Michiel; Schleussner, Carl-Friedrich
    Current global mitigation ambition up to 2030 under the Paris Agreement, reflected in the National Determined Contributions (NDCs), is insufficient to achieve the agreement's 1.5 °C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, the question as to how much collective improvement is achieved is a pivotal one for the credibility of the international climate regime. The recent Special Report on Global Warming of 1.5 °C by the Intergovernmental Panel on Climate Change has assessed a wide range of scenarios that achieve the 1.5 °C limit. Those pathways are characterised by a substantial increase in near-term action and total greenhouse gas (GHG) emission levels about 50 % lower than what is implied by current NDCs. Here we assess the outcomes of different scenarios of NDC updating that fall short of achieving this 1.5 °C benchmark. We find that incremental improvements in reduction targets, even if achieved globally, are insufficient to align collective ambition with the goals of the Paris Agreement. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those median scenarios for extreme temperature, long-term sea-level rise and economic damages for the most vulnerable countries. Under the assumption of maintaining ambition as reflected in current NDCs up to 2100 and beyond, we project a reduction in the gross domestic product (GDP) in tropical countries of around 60 % compared to a no-climate-change scenario and median long-term sea-level rise of close to 2 m in 2300. About half of these impacts can be avoided by limiting warming to 1.5 °C or below. Scenarios of more incremental NDC improvements do not lead to comparable reductions in climate impacts. An increase in aggregated NDC ambition of big emitters by 33 % in 2030 does not reduce presented climate impacts by more than about half compared to limiting warming to 1.5 °C. Our results underscore that a transformational increase in 2030 ambition is required to achieve the goals of the Paris Agreement and avoid the worst impacts of climate change. © 2020 SPIE. All rights reserved.