Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization

2021, Lee, Chuan Ping, Surdu, Mihnea, Bell, David M., Lamkaddam, Houssni, Wang, Mingyi, Ataei, Farnoush, Hofbauer, Victoria, Lopez, Brandon, Donahue, Neil M., Dommen, Josef, Prevot, Andre S. H., Slowik, Jay G., Wang, Dongyu, Baltensperger, Urs, El Haddad, Imad

Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and ionization-induced fragmentation for over two decades. However, the EESI extraction mechanism remains uncertain. Prior studies disagree on whether particles between 20 and 400nm diameter are fully extracted or if the extraction is limited to the surface layer. Here, we examined the analyte extraction mechanism by assessing the influence of particle size and coating thickness on the detection of the molecules therein. We find that particles are extracted fully: organics-coated NH4NO3 particles with a fixed core volume (156 and 226nm in diameter without coating) showed constant EESI signals for NH4NO3 independent of the shell coating thickness, while the signals of the secondary organic molecules comprising the shell varied proportionally to the shell volume. We also found that the EESI sensitivity exhibited a strong size dependence, with an increase in sensitivity by 1-3 orders of magnitude as particle size decreased from 300 to 30nm. This dependence varied with the electrospray (ES) droplet size, the particle size and the residence time for coagulation in the EESI inlet, suggesting that the EESI sensitivity was influenced by the coagulation coefficient between particles and ES droplets. Overall, our results indicate that, in the EESI, particles are fully extracted by the ES droplets regardless of the chemical composition, when they are collected by the ES droplets. However, their coalescence is not complete and depends strongly on their size. This size dependence is especially relevant when EESI is used to probe size-varying particles as is the case in aerosol formation and growth studies with size ranges below 100nm. © 2021 The Author(s).

Loading...
Thumbnail Image
Item

Designing Gallium-Containing Hydroxyapatite Coatings on Low Modulus Beta Ti-45Nb Alloy

2023, Vishnu, Jithin, Voss, Andrea, Hoffmann, Volker, Alberta, Ludovico Andrea, Akman, Adnan, Shankar, Balakrishnan, Gebert, Annett, Calin, Mariana

Low-modulus β-type Ti-45Nb alloy is a promising implant material due to its good mechanical biocompatibility, non-toxicity, and outstanding corrosion resistance. Its excellent chemical stability brings new challenges to chemical surface modification treatments, which are indispensable for both osteogenesis and antibacterial performance. Coatings containing metal ions as anti-microbial agents can be an effective way to reduce implant-associated infections caused by bacterial biofilm. Gallium ion (Ga3+) has the potential to reduce bacterial viability and biofilm formation on implant surfaces. In this study, a novel two-step process has been proposed for Ga3+ incorporation in hydroxyapatite (HAP) to develop bioactive and antibacterial surfaces on Ti-45Nb alloy. For the generation of bioactive surface states, HAP electrodeposition was conducted, followed by wet chemical immersion treatments in gallium nitrate (1 mM). Different buffers such as phosphate, sodium bicarbonate, ammonium acetate, and citrate were added to the solution to maintain a pH value in the range of 6.5–6.9. Coating morphology and HAP phases were retained after treatment with gallium nitrate, and Ga3+ ion presence on the surface up to 1 wt.% was confirmed. Combining Ga and HAP shows great promise to enable the local delivery of Ga3+ ions and consequent antibacterial protection during bone regeneration, without using growth factors or antibiotics.

Loading...
Thumbnail Image
Item

Straightforward Approach for Preparing Durable Antibacterial ZnO Nanoparticle Coatings on Flexible Substrates

2022, Šutka, Andris, Mežule, Linda, Denisova, Viktorija, Meier-Haack, Jochen, Kulkarni, Akshay, Bitina, Sanda, Smits, Krisjanis, Vihodceva, Svetlana

Flexible antibacterial materials have gained utmost importance in protection from the distribution of bacteria and viruses due to the exceptional variety of applications. Herein, we demonstrate a readily scalable and rapid single-step approach for producing durable ZnO nanoparticle antibacterial coating on flexible polymer substrates at room temperature. Substrates used are polystyrene, poly(ethylene-co-vinyl acetate) copolymer, poly(methyl methacrylate), polypropylene, high density polyethylene and a commercial acrylate type adhesive tape. The deposition was achieved by a spin-coating process using a slurry of ZnO nanoparticles in toluene. A stable modification layer was obtained when toluene was a solvent for the polymer substrates, namely polystyrene and poly(ethylene-co-vinyl acetate). These coatings show high antibacterial efficiency causing >5 log decrease in the viable counts of Gram-negative bacteria Escherichia. coli and Gram-positive bacteria Staphylococcus aureus in 120 min. Even after tapping these coated surfaces 500 times, the antibacterial properties remained unchanged, showing that the coating obtained by the presented method is very robust. In contrast to the above findings, the coatings are unstable when toluene is not a solvent for the substrate.

Loading...
Thumbnail Image
Item

Development of a Metal-Based Lightweight Approach Consisting of Cold-Formable Magnesium Sheets in Combination with a Multi-Purpose Powder Coating System

2022, Victoria-Hernández, José, Scholz, Peter, Vakulenko, Serhii, Gedan-Smolka, Michaela, Tuschla, Marcel, Letzig, Dietmar, Kwiatkowski, Lech

This paper will give an overview about the development of a material system, which consists of a novel formable magnesium alloy that is provided with an effective corrosion protection coating. The corrosion protection is to be realized in the form of a forming stable powder coating, which can be applied in the coil coating process. To improve the tribological properties, additional additives are added to the powder coating. Within this paper, first results concerning tribological and forming behavior of the new lightweight material system are given. For the benchmark, the results are compared with commercially available AZ31 Mg alloy.