Search Results

Now showing 1 - 10 of 77
  • Item
    Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon
    (München : European Geopyhsical Union, 2016) van Pinxteren, Dominik; Fomba, Khanneh Wadinga; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut
    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a three-stage and a five-stage collector were applied and samples were analysed for inorganic ions (SO42−,NO3−, NH4+, Cl−, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 µmol L−1 for ammonium, nitrate, and sulfate respectively, between 4 and 27 µmol L−1 for minor ions, 5.4 µmol L−1 for H2O2 (aq), 1.9 µmol L−1 for S(IV), and 3.9 mgC L−1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC × 1.8) contributed 20–40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60–66 % for solute concentrations and 52–80 % for cloud water loadings (CWLs). The similar variability of solute concentrations and CWLs together with the results of back-trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC), were the main factor controlling bulk solute concentrations for the cloud studied. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CVI) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56–0.94, 0.79–0.99, 0.71–98, and 0.67–0.92 for SO42−, NO3−, NH4+, and DOC respectively when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42−, NO3−, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and “U” shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the three-stage collector and somewhat more pronounced from the five-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the five-stage collector was capable of resolving some features of solute size dependencies not seen in the three-stage data, especially sharp concentration increases (up to a factor of 5–10) in the smallest droplets for many solutes.
  • Item
    Ion-particle interactions during particle formation and growth at a coniferous forest site in central Europe
    (München : European Geopyhsical Union, 2014) Gonser, S.G.; Klein, F.; Birmili, W.; Größ, J.; Kulmala, M.; Manninen, H.E.; Wiedensohler, A.; Held, A.
    In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The Waldstein research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analyzed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively.
  • Item
    Hydroxymethanesulfonic acid in size-segregated aerosol particles at nine sites in Germany
    (München : European Geopyhsical Union, 2014) Scheinhardt, S.; van Pinxteren, D.; Müller, K.; Spindler, G.; Herrmann, H.
    In the course of two field campaigns, size-segregated particle samples were collected at nine sites in Germany, including traffic, urban, rural, marine and mountain sites. During the chemical characterisation of the samples some of them were found to contain an unknown substance that was later identified as hydroxymethanesulfonic acid (HMSA). HMSA is known to be formed during the reaction of S(IV) (HSO3− or SO32−) with formaldehyde in the aqueous phase. Due to its stability, HMSA can act as a reservoir species for S(IV) in the atmosphere and is therefore of interest for the understanding of atmospheric sulfur chemistry. However, no HMSA data are available for atmospheric particles from central Europe, and even on a worldwide scale data are scarce. Thus, the present study now provides a representative data set with detailed information on HMSA concentrations in size-segregated central European aerosol particles. HMSA mass concentrations in this data set were highly variable: HMSA was found in 224 out of 738 samples (30%), sometimes in high mass concentrations exceeding those of oxalic acid. On average over all 154 impactor runs, 31.5 ng m−3 HMSA was found in PM10, contributing 0.21% to the total mass. The results show that the particle diameter, the sampling location, the sampling season and the air mass origin impact the HMSA mass concentration. Highest concentrations were found in the particle fraction 0.42–1.2 μm, at urban sites, in winter and with eastern (continental) air masses, respectively. The results suggest that HMSA is formed during aging of pollution plumes. A positive correlation of HMSA with sulfate, oxalate and PM is found (R2 > 0.4). The results furthermore suggest that the fraction of HMSA in PM slightly decreases with increasing pH.
  • Item
    ALADINA - An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer
    (München : European Geopyhsical Union, 2015) Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.
    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few metres. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location for more than 1 h, shows comparable values within the range of ± 20 %. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore, additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m in altitude indicate a high variability with distinct layers of aerosol, especially for the small particles of a few nanometres in diameter on 1 particular day. The stratification was almost neutral and two significant aerosol layers were detected with total aerosol number concentrations up to 17 000 ± 3400 cm−3 between 180 and 220 m altitude and 14 000 ± 2800 cm−3 between 550 and 650 m. Apart from those layers, the aerosol distribution was well mixed and reached the total number concentration of less than 8000 ± 1600 cm−3. During another day, the distribution of the small particles in the lowermost ABL was related to the stratification, with continuously decreasing number concentrations from 16 000 ± 3200 cm−3 to a minimum of 4000 ± 800 cm−3 at the top of the inversion at 320 m. Above this, the total number concentration was rather constant. In the region of 500 to 600 m altitude, a significant difference of both CPCs was observed. This event occurred during the boundary layer development in the morning and represents a particle burst within the ABL.
  • Item
    Chemistry of new particle growth in mixed urban and biogenic emissions - Insights from CARES
    (München : European Geopyhsical Union, 2014) Setyan, A.; Song, C.; Merkel, M.; Knighton, W.B.; Onasch, T.B.; Canagaratna, M.R.; Worsnop, D.R.; Wiedensohler, A.; Shilling, J.E.; Zhang, Q.
    Regional new particle formation and growth events (NPEs) were observed on most days over the Sacramento and western Sierra foothills area of California in June 2010 during the Carbonaceous Aerosols and Radiative Effect Study (CARES). Simultaneous particle measurements at both the T0 (Sacramento, urban site) and the T1 (Cool, rural site located ~40 km northeast of Sacramento) sites of CARES indicate that the NPEs usually occurred in the morning with the appearance of an ultrafine mode at ~15 nm (in mobility diameter, Dm, measured by a mobility particle size spectrometer operating in the range 10-858 nm) followed by the growth of this modal diameter to ~50 nm in the afternoon. These events were generally associated with southwesterly winds bringing urban plumes from Sacramento to the T1 site. The growth rate was on average higher at T0 (7.1 ± 2.7 nm h−1) than at T1 (6.2 ± 2.5 nm h−1), likely due to stronger anthropogenic influences at T0. Using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), we investigated the evolution of the size-resolved chemical composition of new particles at T1. Our results indicate that the growth of new particles was driven primarily by the condensation of oxygenated organic species and, to a lesser extent, ammonium sulfate. New particles appear to be fully neutralized during growth, consistent with high NH3 concentration in the region. Nitrogen-containing organic ions (i.e., CHN+, CH4N+, C2H3N+, and C2H4N+) that are indicative of the presence of alkyl-amine species in submicrometer particles enhanced significantly during the NPE days, suggesting that amines might have played a role in these events. Our results also indicate that the bulk composition of the ultrafine mode organics during NPEs was very similar to that of anthropogenically influenced secondary organic aerosol (SOA) observed in transported urban plumes. In addition, the concentrations of species representative of urban emissions (e.g., black carbon, CO, NOx, and toluene) were significantly higher whereas the photo-oxidation products of biogenic VOCs (volatile organic compounds) and the biogenically influenced SOA also increased moderately during the NPE days compared to the non-event days. These results indicate that the frequently occurring NPEs over the Sacramento and Sierra Nevada regions were mainly driven by urban plumes from Sacramento and the San Francisco Bay Area, and that the interaction of regional biogenic emissions with the urban plumes has enhanced the new particle growth. This finding has important implications for quantifying the climate impacts of NPEs on global scale.
  • Item
    Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland-forest mosaic
    (Milton Park : Taylor & Francis, 2017) Svenningsson, Birgitta; Arneth, Almut; Hayward, Sean; Holst, Thomas; Massling, Andreas; Swietlicki, Erik; Hirsikko, Anne; Junninen, Heikki; Riipinen, Ilona; Vana, Marko; Dal Maso, Miikka; Hussein, Tareq; Kulmala, Markku
    An analysis of particle formation (PF) events over a subarctic mire in northern Swedenwas performed, based on number– size distributions of atmospheric aerosol particles (10–500 nm in diameter) and ions (0.4–40 nm in Tammet diameter). We present classification statistics for PF events from measurements covering the period July 2005–September 2006, with a break over the winter period. The PF event frequency peaked during the summer months, in contrast to other Scandinavian sites where the frequency is highest during spring and autumn. Our analysis includes calculated growth rates and estimates of concentrations and production rates of condensing vapour, deduced from the growth rates and condensational sink calculations, using AIS and SMPS data. Particle formation events with high growth rates (up to 50 nm h-1) occurred repeatedly. In these cases, the newly formed nucleation mode particles were often only present for periods of a few hours. On several occasions, repeated particle formation events were observed within 1 d, with differences in onset time of a few hours. These high growth rates were only observed when the condensation sink was higher than 0.001 s-1.
  • Item
    Near-global aerosol mapping in the upper troposphere and lowermost stratosphere with data from the CARIBIC project
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Hermann, Markus; Weigelt, Andreas; Kapustin, Vladimir; Anderson, Bruce; Thornhill, Kenneth; Van Velthoven, Peter; Zahn, Andreas; Brenninkmeijer, Carl
    This study extrapolates aerosol data of the CARIBIC project from 1997 until June 2008 in along trajectories to compose large-scale maps and vertical profiles of submicrometre particle concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). The extrapolation was validated by comparing extrapolated values with CARIBIC data measured near the respective trajectory position and by comparing extrapolated CARIBIC data to measurements by other experiments near the respective trajectory positions. Best agreement between extrapolated and measured data is achieved with particle lifetimes longer than the maximum length of used trajectories. The derived maps reveal regions of strong and frequent new particle formation, namely the Tropical Central and Western Africa with the adjacent Atlantic, South America, the Caribbean and Southeast Asia. These regions of particle formation coincide with those of frequent deep convective clouds. Vertical particle concentration profiles for the troposphere and the stratosphere confirm statistically previous results indicating frequent new particle formation in the tropopause region. There was no statistically significant increase in Aitken mode particle concentration between the first period of CARIBIC operation, 1997–2002, and the second period, 2004–2009. However, a significant increase in concentration occurred within the latter period when considering it in isolation.
  • Item
    Saharan dust contribution to the Caribbean summertime boundary layer - A lidar study during SALTRACE
    (München : European Geopyhsical Union, 2016) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Müller, Thomas; Sauer, Daniel; Toledano, Carlos; Ansmann, Albert
    Dual-wavelength lidar measurements with the small lidar system POLIS of the Ludwig-Maximilians-Universität München were performed during the SALTRACE experiment at Barbados in June and July 2013. Based on high-accuracy measurements of the linear depolarization ratio down to about 200 m above ground level, the dust volume fraction and the dust mass concentration within the convective marine boundary layer can be derived. Additional information from radiosonde launches at the ground-based measurement site provide independent information on the convective marine boundary layer height and the meteorological situation within the convective marine boundary layer. We investigate the lidar-derived optical properties, the lidar ratio and the particle linear depolarization ratio at 355 and 532 nm and find mean values of 0.04 (SD 0.03) and 0.05 (SD 0.04) at 355 and 532 nm, respectively, for the particle linear depolarization ratio, and (26 ± 5) sr for the lidar ratio at 355 and 532 nm. For the concentration of dust in the convective marine boundary layer we find that most values were between 20 and 50 µgm−3. On most days the dust contribution to total aerosol volume was about 30–40 %. Comparing the dust contribution to the column-integrated sun-photometer measurements we see a correlation between high dust contribution, high total aerosol optical depth and a low Angström exponent, and of low dust contribution with low total aerosol optical depth.
  • Item
    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009
    (München : European Geopyhsical Union, 2011) Heintzenberg, J.; Birmili, W.; Otto, R.; Andreae, M.O.; Mayer, J.-C.; Chi, X.; Panov, A.
    This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8° N; 89.35° E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400–500 cm−3), mid-level concentrations for zonally advected air masses from westerly directions between 55° and 65° N (600–800 cm−3), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm−3). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.
  • Item
    A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals
    (München : European Geopyhsical Union, 2015) Binietoglou, I.; Basart, S.; Alados-Arboledas, L.; Amiridis, V.; Argyrouli, A.; Baars, H.; Baldasano, J.M.; Balis, D.; Belegante, L.; Bravo-Aranda, J.A.; Burlizzi, P.; Carrasco, V.; Chaikovsky, A.; Comerón, A.; D'Amico, G.; Filioglou, M.; Granados-Muñoz, M.J.; Haefele, A.; Hervo, M.; Iarlori, M.; Kokkalis, P.; Lange, D.; Mamouri, R.E.; Mattis, I.; Molero, F.; Montoux, N.; Muñoz, A.; Muñoz Porcar, C.; Navas-Guzmán, F.; Nicolae, D.; Nisantzi, A.; Papagiannopoulos, N.; Papayannis, A.; Pereira, S.; Preißler, J.; Pujadas, M.; Rizi, V.; Rocadenbosch, F.; Sellegri, K.; Simeonov, V.; Tsaknakis, G.; Wagner, F.; Pappalardo, G.
    Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1–6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 μg m−3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies.