Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential

2016, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

This paper is concerned with a distributed optimal control problem for a nonlocal phase field model of CahnHilliard type, which is a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion. The local model has been investigated in a series of papers by P. Podio-Guidugli and the present authors the nonlocal model studied here consists of a highly nonlinear parabolic equation coupled to an ordinary differential inclusion of subdifferential type. The inclusion originates from a free energy containing the indicator function of the interval in which the order parameter of the phase segregation attains its values. It also contains a nonlocal term modeling long-range interactions. Due to the strong nonlinear couplings between the state variables (which even involve products with time derivatives), the analysis of the state system is difficult. In addition, the presence of the differential inclusion is the reason that standard arguments of optimal control theory cannot be applied to guarantee the existence of Lagrange multipliers. In this paper, we employ recent results proved for smooth logarithmic potentials and perform a so-called deep quench approximation to establish existence and first-order necessary optimality conditions for the nonsmooth case of the double obstacle potential.

Loading...
Thumbnail Image
Item

Parameter identification in a semilinear hyperbolic system

2016, Egger, Herbert, Kugler, Thomas, Strogies, Nikolai

We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigate the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings.