Search Results

Now showing 1 - 2 of 2
  • Item
    Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular films
    ([London] : Nature Publishing Group UK, 2023) Zhao, Siqi; Christensen, Oliver; Sun, Zhaozong; Liang, Hongqing; Bagger, Alexander; Torbensen, Kristian; Nazari, Pegah; Lauritsen, Jeppe Vang; Pedersen, Steen Uttrup; Rossmeisl, Jan; Daasbjerg, Kim
    Copper offers unique capability as catalyst for multicarbon compounds production in the electrochemical carbon dioxide reduction reaction. In lieu of conventional catalysis alloying with other elements, copper can be modified with organic molecules to regulate product distribution. Here, we systematically study to which extent the carbon dioxide reduction is affected by film thickness and porosity. On a polycrystalline copper electrode, immobilization of porous bipyridine-based films of varying thicknesses is shown to result in almost an order of magnitude enhancement of the intrinsic current density pertaining to ethylene formation while multicarbon products selectivity increases from 9.7 to 61.9%. In contrast, the total current density remains mostly unaffected by the modification once it is normalized with respect to the electrochemical active surface area. Supported by a microkinetic model, we propose that porous and thick films increase both local carbon monoxide partial pressure and the carbon monoxide surface coverage by retaining in situ generated carbon monoxide. This reroutes the reaction pathway toward multicarbon products by enhancing carbon–carbon coupling. Our study highlights the significance of customizing the molecular film structure to improve the selectivity of copper catalysts for carbon dioxide reduction reaction.
  • Item
    Practical Catalytic Cleavage of C(sp3)−C(sp3) Bonds in Amines
    (Weinheim : Wiley-VCH, 2019) Li, Wu; Liu, Weiping; Leonard, David K.; Rabeah, Jabor; Junge, Kathrin; Brgckner, Angelika; Beller, Matthias
    The selective cleavage of thermodynamically stable C(sp3)−C(sp3) single bonds is rare compared to their ubiquitous formation. Herein, we describe a general methodology for such transformations using homogeneous copper-based catalysts in the presence of air. The utility of this novel methodology is demonstrated for Cα−Cβ bond scission in >70 amines with excellent functional group tolerance. This transformation establishes tertiary amines as a general synthon for amides and provides valuable possibilities for their scalable functionalization in, for example, natural products and bioactive molecules. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.