Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Quantification of osseointegration of plasma-polymer coated titanium alloyed implants by means of microcomputed tomography versus histomorphometry

2015, Gabler, Carolin, Zietz, Carmen, Bieck, Richard, Göhler, Rebecca, Lindner, Tobias, Haenle, Maximilian, Finke, Birgit, Meichsner, Jürgen, Testrich, Holger, Nowottnick, Mathias, Frerich, Bernhard, Bader, Rainer

A common method to derive both qualitative and quantitative data to evaluate osseointegration of implants is histomorphometry. The present study describes a new image reconstruction algorithm comparing the results of bone-to-implant contact (BIC) evaluated by means of µCT with histomorphometry data. Custom-made conical titanium alloyed (Ti6Al4V) implants were inserted in the distal tibial bone of female Sprague-Dawley rats. Different surface configurations were examined: Ti6Al4V implants with plasma-polymerized allylamine (PPAAm) coating and plasma-polymerized ethylenediamine (PPEDA) coating as well as implants without surface coating. After six weeks postoperatively, tibiae were explanted and BIC was determined by µCT (3D) and afterwards by histomorphometry (2D). In comparison to uncoated Ti6Al4V implants demonstrating low BIC of 32.4% (histomorphometry) and 51.3% (µCT), PPAAm and PPEDA coated implants showed a nonsignificant increase in BIC (histomorphometry: 45.7% and 53.5% and µCT: 51.8% and 62.0%, resp.). Mean BIC calculated by µCT was higher for all surface configurations compared to BIC detected by histomorphometry. Overall, a high correlation coefficient of 0.70 () was found between 3D and 2D quantification of BIC. The μCT analysis seems to be suitable as a nondestructive and accurate 3D imaging method for the evaluation of the bone-implant interface.

Loading...
Thumbnail Image
Item

Smart Design of Cz-Ge Crystal Growth Furnace and Process

2022, Dropka, Natasha, Tang, Xia, Chappa, Gagan Kumar, Holena, Martin

The aim of this study was to evaluate the potential of the machine learning technique of decision trees to understand the relationships among furnace design, process parameters, crystal quality, and yield in the case of the Czochralski growth of germanium. The ultimate goal was to provide the range of optimal values of 13 input parameters and the ranking of their importance in relation to their impact on three output parameters relevant to process economy and crystal quality. Training data were provided by CFD modelling. The variety of data was ensured by the Design of Experiments method. The results showed that the process parameters, particularly the pulling rate, had a substantially greater impact on the crystal quality and yield than the design parameters of the furnace hot zone. Of the latter, only the crucible size, the axial position of the side heater, and the material properties of the radiation shield were relevant.