Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Effect of Heat Treatments under High Isostatic Pressure on the Transport Critical Current Density at 4.2 K and 20 K in Doped and Undoped MgB2 Wires

2021, Gajda, Daniel, Zaleski, Andrzej J., Morawski, Andrzej J., Małecka, Malgorzata, Nenkov, Konstantin, Rindfleisch, Matt, Hossain, Md Shahriar A., Czujko, Tomasz

Annealing undoped MgB2 wires under high isostatic pressure (HIP) increases transport critical current density (Jtc) by 10% at 4.2 K in range magnetic fields from 4 T to 12 T and significantly increases Jtc by 25% in range magnetic fields from 2 T to 4 T and does not increase Jtc above 4 T at 20 K. Further research shows that a large amount of 10% SiC admixture and thermal treatment under a high isostatic pressure of 1 GPa significantly increases the Jtc by 40% at 4.2 K in magnetic fields above 6 T and reduces Jtc by one order at 20 K in MgB2 wires. Additionally, our research showed that heat treatment under high isostatic pressure is more evident in wires with smaller diameters, as it greatly increases the density of MgB2 material and the number of connections between grains compared to MgB2 wires with larger diameters, but only during the Mg solid-state reaction. In addition, our study indicates that smaller wire diameters and high isostatic pressure do not lead to a higher density of MgB2 material and more connections between grains during the liquid-state Mg reaction.

Loading...
Thumbnail Image
Item

Magnetic granularity in pulsed laser deposited YBCO films on technical templates at 5 K

2017-9-4, Lao, M., Hecher, J., Pahlke, P., Sieger, M., Hühne, R., Eisterer, M.

The manifestation of granularity in the superconducting properties of pulsed laser deposited YBCO films on commercially available metallic templates was investigated by scanning Hall probe microscopy at 5 K and was related to local orientation mapping of the YBCO layer. The YBCO films on stainless steel templates with a textured buffer layer of yttrium stabilized ZrO2 grown by alternating beam assisted deposition have a mean grain size of less than with a sharp texture. This results in a homogeneous trapped field profile and spatial distribution of the current density. On the other hand, YBCO films on biaxially textured NiW substrates show magnetic granularity that persists down to a temperature of 5 K and up to an applied magnetic field of 4 T. The origin of the granular field profile is directly correlated to the microstructural properties of the YBCO layer adopted from the granular NiW substrate which leads to a spatially inhomogeneous current density. Grain-to-grain in-plane tilts lead to grain boundaries that obstruct the current while out-of-plane tilts mainly affect the grain properties, resulting in areas with low . Hence, not all grain boundaries cause detrimental effects on since the orientation of individual NiW grains also contributes to observed inhomogeneity and granularity.