Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals

2022, Voloshyna, Olesia, Romaka, Vitaliy V., Karmakar, Koushik ;Seiro, Silvia, Maljuk, Andrey, Büchner, Bernd

The travelling solvent floating zone (TSFZ) growth of Eu-substituted LSCO (La1.81−xEuxSr0.19CuO4, with nominal x = 0 ÷ 0.4) single crystals was systematically explored for the first time. The substitution of La with Eu considerably decreased the decomposition temperature. Optimal growth parameters were found to be: oxygen pressure 9.0–9.5 bars; Eu-free CuO-poor solvent (66 mol% CuO) with a molar ratio of La2O3:SrCO3:CuO = 4:4.5:16.5 and growth rate 0.6 mm/hour. The obtained single crystals were characterized with optical polarized microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analysis. The solubility of Eu in LSCO appeared to be limited to x~0.36–0.38 under the used conditions. The substitution of La3+ with smaller Eu3+ ions led to a structural transition from tetragonal with space group I4/mmm for La1.81Sr0.19CuO4 (x = 0) to orthorhombic with space group Fmmm for La1.81−xSr0.19EuxCuO4 (x = 0.2, 0.3, 0.4), and to a substantial shrinking of the c-axis from 13.2446 Å (x = 0.0) to 13.1257 Å (x = 0.4). Such structural changes were accompanied by a dramatic decrease in the superconducting critical temperature, Tc, from 29.5 K for x = 0 to 13.8 K for 0.2. For x ≥ 0.3, no superconductivity was detected down to 4 K.

Loading...
Thumbnail Image
Item

Floating Zone Growth of Pure and Pb-Doped Bi-2201 Crystals

2024, Roslova, Maria, Büchner, Bernd, Maljuk, Andrey

In this review, we summarize recent progress in crystal growth and understanding of the influence of crystal structure on superconductivity in pure and Pb-doped Bi2Sr2CuOy (Bi-2201) materials belonging to the overdoped region of high-temperature cuprate superconductors. The crystal growth of Bi-2201 superconductors faces challenges due to intricate materials chemistry and the lack of knowledge of corresponding phase diagrams. Historically, a crucible-free floating zone method emerged as the most promising growth approach for these materials, resulting in high-quality single crystals. This review outlines the described methods in the literature and the authors’ synthesis endeavors encompassing Pb-doped Bi-2201 crystals, provides a detailed structural characterization of as-grown and post-growth annealed samples, and highlights optimal growth conditions that yield large-size, single-phase, and compositionally homogeneous Bi-2201 single crystals.