Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Photophysics of Anionic Bis(4H-imidazolato)CuI Complexes

2022, Seidler, Bianca, Tran, Jens H., Hniopek, Julian, Traber, Philipp, Görls, Helmar, Gräfe, Stefanie, Schmitt, Michael, Popp, Jürgen, Schulz, Martin, Dietzek‐Ivanšić, Benjamin

In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.

Loading...
Thumbnail Image
Item

A tandem of GC-MS and electroanalysis for a rapid chemical profiling of bacterial extracellular matrix

2023, Silina, Y. E., Zolotukhina, E. V., Koch, M., Fink‐Straube, C.

Herein an assay toward a rapid and reliable profiling of extracellular matrix of Escherichia coli (E. coli) utilizing a tandem of GC-MS as a tool for definition of the exact chemical nature of low molecular weight compounds and cyclic voltammetry for their high throughput detection is presented. Briefly, during a set of investigations the formation of glycerol in the extracellular matrix (ECM) of E. coli at physiological relevant conditions of cells was revealed. Based on the obtained knowledge, the electrochemical protocol allowing both qualitative and quantitative analyses of glycerol in E. coli ECMs at palladium ink-modified screen printed electrodes with precision values (RSD) <10 % and recovery rates ranged from 98 % to 102 % was proposed. The provided protocol for a rapid electrochemical profiling of the bacterial ECMs can readily be used as a guideline for the controlled electroanalysis of target electroactive signaling analytes in complex biological samples.