Search Results

Now showing 1 - 9 of 9
  • Item
    PH-Responsive Biohybrid Carrier Material for Phenol Decontamination in Wastewater
    (Columbus, Ohio : American Chemical Soc., 2018) Pretscher, Martin; Pineda-Contreras, Beatriz A.; Kaiser, Patrick; Reich, Steffen; Schöbel, Judith; Kuttner, Christian; Freitag, Ruth; Fery, Andreas; Schmalz, Holger; Agarwal, Seema
    Smart polymers are a valuable platform to protect and control the activity of biological agents over a wide range of conditions, such as low pH, by proper encapsulation. Such conditions are present in olive oil mill wastewater with phenol as one of the most problematic constituents. We show that elastic and pH-responsive diblock copolymer fibers are a suitable carrier for Corynebacterium glutamicum, i.e., bacteria which are known for their ability to degrade phenol. Free C. glutamicum does not survive low pH conditions and fails to degrade phenol at low pH conditions. Our tea-bag like biohybrid system, where the pH-responsive diblock copolymer acts as a protecting outer shell for the embedded bacteria, allows phenol degradation even at low pH. Utilizing a two-step encapsulation process, planktonic cells were first encapsulated in poly(vinyl alcohol) to protect the bacteria against the organic solvents used in the second step employing coaxial electrospinning.
  • Item
    Ageing of alkylthiol-stabilized gold nanoparticles
    (Hoboken, NJ : Wiley, 2015) Lacava, Johann; Weber, Anika; Kraus, Tobias
    The ageing of spherical gold nanoparticles having 6-nm-diameter cores and a ligand shell of dodecanethiol is investigated under different storage conditions. Losses caused by agglomeration and changes in optical particle properties are quantified. Changes in colloidal stability are probed by analytical centrifugation in a polar solvent mixture. Chemical changes are detected by elementary analysis of particles and solvent. Fractionation occurs under all storage conditions. Ageing is not uniform but broadens the property distributions of the particles. Small-number statistics in the ligand shell density and the morphological heterogeneity of particles are possible explanations. Washing steps exacerbate ageing, a process that could not be fully reversed by excess ligands. Dry storage is not preferable to storage in solvent. Storage under inert argon atmosphere reduces losses more than all other conditions but could not prevent it entirely.
  • Item
    Strontium substitution of gelatin modified calcium hydrogen phosphates as porous hard tissue substitutes
    (New York, NY [u.a.] : Wiley, 2020) Kruppke, Benjamin; Heinemann, Christiane; Gebert, Annett; Rohnke, Marcus; Weiß, Manuel; Henß, Anja; Wiesmann, Hans-Peter; Hanke, Thomas
    Aiming at the generation of a high strontium-containing degradable bone substitute, the exchange of calcium with strontium in gelatin-modified brushite was investigated. The ion substitution showed two mineral groups, the high-calcium containing minerals with a maximum measured molar Ca/Sr ratio of 80%/20% (mass ratio 63%/37%) and the high-strontium containing ones with a maximum measured molar Ca/Sr ratio of 21%/79% (mass ratio 10%/90%). In contrast to the high-strontium mineral phases, a high mass loss was observed for the calcium-based minerals during incubation in cell culture medium (alpha-MEM), but also an increase in strength owing to dissolution and re-precipitation. This resulted for the former in a decrease of cation concentration (Ca + Sr) in the medium, while the pH value decreased and the phosphate ion concentration rose significantly. The latter group of materials, the high-strontium containing ones, showed only a moderate change in mass and a decrease in strength, but the Ca + Sr concentration remained permanently above the initial calcium concentration in the medium. This might be advantageous for a future planned application by supporting bone regeneration on the cellular level. © 2020 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
  • Item
    Unravelling New Processes at Interfaces: Photochemical Isoprene Production at the Sea Surface
    (Columbus, Ohio : American Chemical Society, 2015) Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian
    Isoprene is an important reactive gas that is produced mainly in terrestrial ecosystems but is also produced in marine ecosystems. In the marine environment, isoprene is produced in the seawater by various biological processes. Here, we show that photosensitized reactions involving the sea-surface microlayer lead to the production of significant amounts of isoprene. It is suggested that H-abstraction processes are initiated by photochemically excited dissolved organic matter which will the degrade fatty acids acting as surfactants. This chemical interfacial processing may represent a significant abiotic source of isoprene in the marine boundary layer.
  • Item
    The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading
    (Weinheim : Wiley-VCH, 2023) Pameté, Emmanuel; Köps, Lukas; Kreth, Fabian Alexander; Pohlmann, Sebastian; Varzi, Alberto; Brousse, Thierry; Balducci, Andrea; Presser, Volker
    High-performance electrochemical applications have expedited the research in high-power devices. As such, supercapacitors, including electrical double-layer capacitors (EDLCs) and pseudocapacitors, have gained significant attention due to their high power density, long cycle life, and fast charging capabilities. Yet, no device lasts forever. It is essential to understand the mechanisms behind performance degradation and aging so that these bottlenecks can be addressed and tailored solutions can be developed. Herein, the factors contributing to the aging and degradation of supercapacitors, including electrode materials, electrolytes, and other aspects of the system, such as pore blocking, electrode compositions, functional groups, and corrosion of current collectors are examined. The monitoring and characterizing of the performance degradation of supercapacitors, including electrochemical methods, in situ, and ex situ techniques are explored. In addition, the degradation mechanisms of different types of electrolytes and electrode materials and the effects of aging from an industrial application standpoint are analyzed. Next, how electrode degradations and electrolyte decompositions can lead to failure, and pore blocking, electrode composition, and other factors that affect the device's lifespan are examined. Finally, the future directions and challenges for reducing supercapacitors' performance degradation, including developing new materials and methods for characterizing and monitoring the devices are summarized.
  • Item
    Verbundprojekt: Batterie – Stationär in Sachsen (BaSta), Teilvorhaben: Leibniz IFW : Schlussbericht ; Berichtszeitraum: 01.11.2012-30.04.2016
    (Hannover : Technische Informationsbibliothek (TIB), 2016) Eckert, Jürgen; Giebeler, Lars
    Die Entwicklung und Umsetzung umfasst eines völlig neuartigen Batteriekonzeptes, der die Vorteile der bisherigen Na-S-Hochtemperaturbatterien (z.B. niedrige Kosten und hohe Verfügbarkeit der notwendigen Rohstoffe) mit der Performance moderner Lithium-Ionenbatterien, jedoch auf Na-Ionenbasis, im Niedertemperaturbereich verknüpft. Dazu müssen neue Elektroden- bzw. Separatormaterialien mit vorteilhafter Interaktion und Degradationsstabilität in verschiedenen neuartigen Elektrolyten entwickelt werden. Darüber hinaus werden geeignete Verfahren zur Herstellung und Fertigung dieser Komponenten zu Niedertemperatur-Na-S-Batterien generiert. Die Ziele sollen durch die außerordentlich enge Vernetzung mehrerer Professuren der TU Dresden mit verschiedenen Instituten der Fraunhofer Gesellschaft, dem Leibniz IFW Dresden e.V. und der TU Bergakademie Freiberg erreicht werden. Der Arbeitsplan sieht eine 'bottom up' Strategie von der Materialentwicklung und Charakterisierung über die Werkstoffprozessierung hin zur Systementwicklung und -charakterisierung vor. Die universitären Einrichtungen arbeiten dabei vorwiegend grundlagenorientiert auf dem Gebiet der Materialentwicklung für einen völlig neuen Batterietyp. Die dabei gewonnenen Erkenntnisse werden unmittelbar in die anwendungsorientierte Forschung überführt. Entscheidend ist die interaktive Zusammenarbeit zu allen Zeitpunkten und auf allen Ebenen des Gesamtvorhabens.
  • Item
    Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation
    (London : Nature Publishing Group, 2017) Serdukova, L.; Zheng, Y.; Duan, J.; Kurths, J.
    For the tipping elements in the Earth's climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents Ĺevy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.
  • Item
    We need biosphere stewardship that protects carbon sinks and builds resilience
    (Washington, DC : National Acad. of Sciences, 2021) Rockström, Johan; Beringer, Tim; Hole, David; Griscom, Bronson; Mascia, Michael B.; Folke, Carl; Creutzig, Felix
    [no abstract available]
  • Item
    Bioactive glass–ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses
    ([London] : Macmillan Publishers Limited, 2024) Kirste, Gloria; Contreras Jaimes, Altair; de Pablos-Martín, Araceli; de Souza e Silva, Juliana Martins; Massera, Jonathan; Hill, Robert G.; Brauer, Delia S.
    Crystallisation of bioactive glasses has been claimed to negatively affect the ion release from bioactive glasses. Here, we compare ion release and mineralisation in Tris–HCl buffer solution for a series of glass–ceramics and their parent glasses in the system SiO2–CaO–P2O5–CaF2. Time-resolved X-ray diffraction analysis of glass–ceramic degradation, including quantification of crystal fractions by full pattern refinement, show that the glass–ceramics precipitated apatite faster than the corresponding glasses, in agreement with faster ion release from the glass–ceramics. Imaging by transmission electron microscopy and X-ray nano-computed tomography suggest that this accelerated degradation may be caused by the presence of nano-sized channels along the internal crystal/glassy matrix interfaces. In addition, the presence of crystalline fluorapatite in the glass–ceramics facilitated apatite nucleation and crystallisation during immersion. These results suggest that the popular view of bioactive glass crystallisation being a disadvantage for degradation, apatite formation and, subsequently, bioactivity may depend on the actual system study and, thus, has to be reconsidered.