Search Results

Now showing 1 - 3 of 3
  • Item
    Yields and Immunomodulatory Effects of Pneumococcal Membrane Vesicles Differ with the Bacterial Growth Phase
    (Weinheim : Wiley-VCH, 2021) Mehanny, Mina; Kroniger, Tobias; Koch, Marcus; Hoppstädter, Jessica; Becher, Dörte; Kiemer, Alexandra K.; Lehr, Claus-Michael; Fuhrmann, Gregor
    Streptococcus pneumoniae infections are a leading cause of death worldwide. Bacterial membrane vesicles (MVs) are promising vaccine candidates because of the antigenic components of their parent microorganisms. Pneumococcal MVs exhibit low toxicity towards several cell lines, but their clinical translation requires a high yield and strong immunogenic effects without compromising immune cell viability. MVs are isolated during either the stationary phase (24 h) or death phase (48 h), and their yields, immunogenicity and cytotoxicity in human primary macrophages and dendritic cells have been investigated. Death-phase vesicles showed higher yields than stationary-phase vesicles. Both vesicle types displayed acceptable compatibility with primary immune cells and several cell lines. Both vesicle types showed comparable uptake and enhanced release of the inflammatory cytokines, tumor necrosis factor and interleukin-6, from human primary immune cells. Proteomic analysis revealed similarities in vesicular immunogenic proteins such as pneumolysin, pneumococcal surface protein A, and IgA1 protease in both vesicle types, but stationary-phase MVs showed significantly lower autolysin levels than death-phase MVs. Although death-phase vesicles produced higher yields, they lacked superiority to stationary-phase vesicles as vaccine candidates owing to their similar antigenic protein cargo and comparable uptake into primary human immune cells.
  • Item
    Lipid–Polymer Hybrid Nanoparticles for mRNA Delivery to Dendritic Cells: Impact of Lipid Composition on Performance in Different Media
    (Basel : MDPI, 2022) Kliesch, Lena; Delandre, Simon; Gabelmann, Aljoscha; Koch, Marcus; Schulze, Kai; Guzmán, Carlos A.; Loretz, Brigitta; Lehr, Claus-Michael
    To combine the excellent transfection properties of lipids with the high stability of polymeric nanoparticles, we designed a hybrid system with a polymeric core surrounded by a shell of different lipids. The aim is to use this technology for skin vaccination purposes where the transfection of dendritic cells is crucial. Based on a carrier made of PLGA and the positively charged lipid DOTMA, we prepared a panel of nanocarriers with increasing amounts of the zwitterionic phospholipid DOPE in the lipid layer to improve their cell tolerability. We selected a nomenclature accordingly with numbers in brackets to represent the used mol% of DOPE and DOTMA in the lipid layer, respectively. We loaded mRNA onto the surface and assessed the mRNA binding efficacy and the degree of protection against RNases. We investigated the influence of the lipid composition on the toxicity, uptake and transfection in the dendritic cell line DC 2.4 challenging the formulations with different medium supplements like fetal calf serum (FCS) and salts. After selecting the most promising candidate, we performed an immune stimulation assay with primary mouse derived dendritic cells. The experiments showed that all tested lipid–polymer nanoparticles (LPNs) have comparable hydrodynamic parameters with sizes between 200 and 250 nm and are able to bind mRNA electrostatically due to their positive zetapotential (20–40 mV for most formulations). The more of DOPE we add, the more free mRNA we find and the better the cellular uptake reaching approx. 100% for LPN(60/40)–LPN(90/10). This applies for all tested formulations leading to LPN(70/30) with the best performance, in terms of 67% of live cells with protein expression. In that case, the supplements of the medium did not influence the transfection efficacy (56% vs. 67% (suppl. medium) for live cells and 63% vs. 71% in total population). We finally confirmed this finding using mouse derived primary immune cells. We can conclude that a certain amount of DOTMA in the lipid coating of the polymer core is essential for complexation of the mRNA, but the zwitterionic phospholipid DOPE is also important for the particles’ performance in supplemented media.
  • Item
    Gas Plasma Protein Oxidation Increases Immunogenicity and Human Antigen-Presenting Cell Maturation and Activation
    (Basel : MDPI, 2022) Clemen, Ramona; Arlt, Kevin; von Woedtke, Thomas; Bekeschus, Sander
    Protein vaccines rely on eliciting immune responses. Inflammation is a prerequisite for immune responses to control infection and cancer but is also associated with disease onset. Reactive oxygen species (ROSs) are central during inflammation and are capable of inducing non-enzymatic oxidative protein modifications (oxMods) associated with chronic disease, which alter the functionality or immunogenicity of proteins that are relevant in cancer immunotherapy. Specifically, antigen-presenting cells (APCs) take up and degrade extracellular native and oxidized proteins to induce adaptive immune responses. However, it is less clear how oxMods alter the protein’s immunogenicity, especially in inflammation-related short-lived reactive species. Gas plasma technology simultaneously generates a multitude of ROSs to modify protein antigens in a targeted and controlled manner to study the immunogenicity of oxMods. As model proteins relevant to chronic inflammation and cancer, we used gas plasma-treated insulin and CXCL8. We added those native or oxidized proteins to human THP-1 monocytes or primary monocyte-derived cells (moDCs). Both oxidized proteins caused concentration-independent maturation phenotype alterations in moDCs and THP-1 cells concerning surface marker expression and chemokine and cytokine secretion profiles. Interestingly, concentration-matched H2O2-treated proteins did not recapitulate the effects of gas plasma, suggesting sufficiently short diffusion distances for the short-lived reactive species to modify proteins. Our data provide evidence of dendric cell maturation and activation upon exposure to gas plasma- but not H2O2-modified model proteins. The biological consequences of these findings need to be elucidated in future inflammation and cancer disease models.