Search Results

Now showing 1 - 3 of 3
  • Item
    Optimal control of geometric partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hintermüller, Michael; Keil, Tobias
    Optimal control problems for geometric (evolutionary) partial differential inclusions are considered. The focus is on problems which, in addition to the nonlinearity due to geometric evolution, contain optimization theoretic challenges because of non-smoothness. The latter might stem from energies containing non-smooth constituents such as obstacle-type potentials or terms modeling, e.g., pinning phenomena in microfluidics. Several techniques to remedy the resulting constraint degeneracy when deriving stationarity conditions are presented. A particular focus is on Yosida-type mollifications approximating the original degenerate problem by a sequence of nondegenerate nonconvex optimal control problems. This technique is also the starting point for the development of numerical solution schemes. In this context, also dual-weighted residual based error estimates are addressed to facilitate an adaptive mesh refinement. Concerning the underlying state model, sharp and diffuse interface formulations are discussed. While the former always allows for accurately tracing interfacial motion, the latter model may be dictated by the underlying physical phenomenon, where near the interface mixed phases may exist, but it may also be used as an approximate model for (sharp) interface motion. In view of the latter, (sharp interface) limits of diffuse interface models are addressed. For the sake of presentation, this exposition confines itself to phase field type diffuse interface models and, moreover, develops the optimal control of either of the two interface models along model applications. More precisely, electro-wetting on dielectric is used in the sharp interface context, and the control of multiphase fluids involving spinodal decomposition highlights the phase field technique. Mathematically, the former leads to a Hele-Shaw flow with geometric boundary conditions involving a complementarity system due to contact line pinning, and the latter gives rise to a Cahn-Hilliard Navier-Stokes model including a non-smooth obstacle type potential leading to a variational inequality constraint.
  • Item
    Analysis of a tumor model as a multicomponent deformable porous medium
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Krejčí, Pavel; Rocca, Elisabetta; Sprekels, Jürgen
    We propose a diffuse interface model to describe tumor as a multicomponent deformable porous medium. We include mechanical effects in the model by coupling the mass balance equations for the tumor species and the nutrient dynamics to a mechanical equilibrium equation with phase-dependent elasticity coefficients. The resulting PDE system couples two Cahn--Hilliard type equations for the tumor phase and the healthy phase with a PDE linking the evolution of the interstitial fluid to the pressure of the system, a reaction-diffusion type equation for the nutrient proportion, and a quasistatic momentum balance. We prove here that the corresponding initial-boundary value problem has a solution in appropriate function spaces.
  • Item
    Analysis of a diffuse interface model of multispecies tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio
    We consider a diffuse interface model for tumor growth recently proposed in [3]. In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity u satisfies u ypsilon 0, where ypsilon is the outer normal to the boundary of the domain. We also study a singular limit as the diffuse interface coefficient tends to zero.